File System Interface

® Whatis afile?

® How can a file be accessed?
® How can a file be found?

® How are files protected?

® What is file consistency?

» Handling multiple users for a single file
» Spreading updates around

© 1999 by Ethan L. Miller 10-1

What Isa File?

® Afile is a group of bits that share some logical relationship to
one another

» Relationship defined by user or OS
» People can disagree on what goes into a single file
® Afile usually has a contiguous logical address space
® Files can contain
» Data
— Numbers (binary, character, other)
— Text (documents, program source, e-mail, etc.)
— Structured information (database)
» Program (executable code, script)
» Some of each...

© 1999 by Ethan L. Miller 10-2

Internal File Structure

® Files may have internal structure, decided on by
» Operating system
» User program
® Structure can include
» Flat file / no structure (simple string of bits or bytes)
» Records
— Fixed length (e.g., n bytes per record)
— Variable length (e.g., one line of text per record)
» Complex structure
— Formatted word processing or spreadsheet document
— Executable file with relocation info, symbol table, etc.

® Simulate complex structure by using flat file with special data
structures in file

© 1999 by Ethan L. Miller 10-3

File Attributes

® (OS maintains information for each individual file

® Information maintained includes
» Name: human-readable pointer to the file
» Type: needed for systems with different file types (Mac, etc.)
» Location: pointers to file data on disk
» Size: number of bytes in the file
» Protection: information about who can use the file
» Owner: information about the file’s owner (for accounting)

» Timestamps: time of creation, last modification, last usage
(perhaps others...) for accounting & security

® Information stored in the directory structure
» Structure maintained on disk
» Structure updated whenever information changes

© 1999 by Ethan L. Miller 10-4

Operations on Files

® General file operations
» Create: make a new file
» Delete: delete an existing file

» Open: find the appropriate directory entry on disk, and copy the
entry to memory

» Close: write the directory entry for the file to disk, updating it
» Stat: get information about a particular file
» Other functions to query & update file information
® Access
» Read: read data from a file
» Write: write data to file
» Truncate: remove all data from the file

© 1999 by Ethan L. Miller 10-5

File Types

File types are used to identify the kind of data in a file

Types can be indicated by

» File name / required: MS-DOS

» File name / optional: Unix

» Type & creator info: Mac

Some systems require type information (MS-DOS, Mac)

» Type included in name (.exe means executable on MS-DOS)

» Type included in file information, but not in name: Mac has
creator & type information that shows up as different icons

Other systems have optional type information (Unix)
» Text files on Unix need not end in .text or .txt
» Program suffixes done by convention
» C compilers will often accept files not ending in .c

© 1999 by Ethan L. Miller 10-6

Accessing Files

® Sequential access

»

»

»

»

»

File data accessed linearly: from start to finish

OS keeps track of current position in file

Next read or write starts at current position

Current position updated to end of previous operation
Current position may be reset to start of file

® Direct (random) access

»

»

»

Repositioning can be done to any point in file
Position supplied either

— With read or write request

— As a separate call to OS (Iseek)
Often, OS supports both sequential & random access

® Generally, sequential access is more common and faster

© 1999 by Ethan L. Miller 10-7

Directory Structures

® The directory is a structure on

disk that contains information
about all the files on the disk

»

»

® Directory & files reside on disk
® Backups are kept on tape

Structure may be complex

Information about a single file
may be saved in several
locations

— Human-readable name in
one place

— Other information (size,
etc.) elsewhere

© 1999 by Ethan L. Miller 10-8

Information Stored in a Directory

® Directory stores information about files
» Information is also called metadata
» Includes information about files discussed earlier
® In Unix, information is split into two pieces
» File name stored in “directory”
» Other information stored in inode
— File type
— Data location
— Current & maximum length
— Date last accessed (for archival purposes)
— Date last updated (for backup purposes)
— File owner (accounting & quota)
— Protection bits

© 1999 by Ethan L. Miller 10-9

Directory Operations

® Locate afile
» Specified by name
» Other parameters (size, etc.)
® Create a file: make an entry in the directory
® Delete a file: remove the directory entry
® List a directory
® Rename afile
® Traverse all (or a subset) of the file system

© 1999 by Ethan L. Miller 10-10

Directory Organization

® Efficiency
» Allow fast file location & directory entry updating
» Consume as little space as possible

® User convenience
» Naming allows multiple names for a single file

» Naming allows multiple files to have the same name, albeit for
different users

® File grouping
» Allow files to be grouped together by common properties
» Groups determined by users (directories in Unix)

» Groups determined by system (all files modified since
yesterday)

© 1999 by Ethan L. Miller 10-11

Single-Level (Flat) Directory

® Single directory for all users

® Problems
» File names are global: users can't reuse the same name
» Grouping: no way of associating related files

Directory | foo bar gr ades dir .login bi n

Files

© 1999 by Ethan L. Miller 10-12

One Directory Per User

® Separate directory for each user
» Single directory for any user
» Naming problem resolved: different users can reuse a name
» Still no way of grouping files

® Introduces the concept of “path name”

Top_le\/el di rectory elm aaron | zzhang
. / \ \
directories bar gr ades foo .login .login
Files i ﬁ ﬁ
© 1999 by Ethan L. Miller 10-13

Tree-Structured Directory

® Expand two-level structure /
o “infinite” levels: tree
structure
» Grouping by sub-directory

» Name must only be unique
within sub-directory
® Directories can contain both | €l m| | aaron cat ys

directories and files j\

USG‘FS

¢ Current directory: default l htt pd| |ft pd

directory for file accesses
® Path name: list of directories
along path to file

grades |[.login||.login

y v
ol W &

© 1999 by Ethan L. Miller 10-14

More on Tree-Structured Directories

® Path names may be specified as
» Relative: start in current directory
» Absolute: start at root (top of tree)

® Files can be created anywhere in the tree if path is fully

specified

® Non-empty directories can’'t be deleted directly
» First, delete all the files

» Next, delete the directory itself

» Follow this procedure recursively to delete an entire sub-tree

® Problem: files can still have only a single name: attached at a
single place in the tree structure

© 1999 by Ethan L. Miller

10-15

Acyclic Graph Directories

® Want more than one name per file (or sub-directory!)
® Solution: allow multiple pointers to each file or sub-directory
® Cycles prevented: links must point lower in the tree

users

Sys

P

eIA m aaron cn’ds daenons
grades N ogl n foo bar | ocal | htt pd ftpd
% | at ex

© 1999 by Ethan L. Miller

LY :ﬂﬂf

uu

\

10-16

|ssues with Acyclic Graph Directories

® Aliasing: files and directories can have multiple different
names
» Pointers to a file or directory at several places in graph
» Keep track of number of pointers to a given object
® Removing a link: file system must decide whether to remove
object pointed to by link
» Keep an array (or list) of all pointers to a given object
— Easy to figure out who points to the object
— May lead to inefficiency: variable-sized allocations
» Keep count of links to this object
— Single integer -> delete object when count reaches O

— Must keep count consistent: increment count and allocate
link atomically

© 1999 by Ethan L. Miller 10-17

General Graph Directories

® Links can go from anywhere to anywhere
® Cycles are possible and must be dealt with

users Sys

=<

el m | aar on S)}\S bi n | daenons

ﬂf|\‘ /l\

grades | |f std |l ocal httpd ftpd

SN \geeeea

© 1999 by Ethan L. Miller 10-18

Dealing With Cyclesin Directories

® Problem: cycles make several things difficult
» Lookups can go into infinite loops

» Unlinking can have difficulty telling whether an object is actually
unreferenced

® Solutions:
» Allow links to files but not to subdirectories
— Eliminates cycles
— Reduces flexibility

» Use standard garbage collection algorithms to delete
unreferenced objects

» Try to detect cycles when a link is added - slow
» Use “soft links”: link is just a name, not a pointer
— No need to garbage collect objects
— May result in “dangling” links...

© 1999 by Ethan L. Miller 10-19

Protection in File Systems

File owner (initially, its creator) should be able to control
» What can be done to a file
» Who can do things to a file
Access types for files are
» Read
» Write
» Execute (files only)
» Append (files only)
» Delete
Directories also allow
» List
» Create
® May need “meta-permissions”: ability to grant permissions to
others

© 1999 by Ethan L. Miller 10-20

Protection in Unix

® Directories are stored as files, so only one protection
mechanism
® Each file has a user (owner) and group associated with it
» User ID and group ID stored in inode
» Text translation of UID & GID looked up in system files
® Each file has three sets of protection bits associated with it
» One set of rights for each of user, group, and “others”
» Possible rights are:
— Read
— Write
— Execute (lookup for directories)
» Only owner (or root) can change the permissions
» Owner (or root) can change owner or group

© 1999 by Ethan L. Miller

Protection in AFS

® AFS has more flexible model than Unix
» Unix requires predefined groups (created by system admin)
» Unix allows only one group per file
® AFS uses access control lists (ACLS)
» List can be as long as desired
» List may include individual users and/or predefined groups

» Lists only attached to directories, and apply to files within the
directory

® Permissions given for
» Read, write, insert (create), delete, lookup / list
» Lock (K): lock files within the directory
» Administer (a) directory permissions

© 1999 by Ethan L. Miller

File Consistency

® Multiple users may access a file at the same time
» If only reads, no problem: file doesn’t change
» If at least one writer, problems crop up
® Problems with writers
» One writer, many readers
— Readers see changes “eventually”
— Issue: how long is eventually?
— Either get old or new data
— After file is closed, changes “stick”
» Many writers (possibly with readers)
— Writers could make conflicting changes

— Order of changes is very important, but could be difficult to
synchronize (remember synchronization?)

— This situation is very uncommon

© 1999 by Ethan L. Miller 10-23

Examples of File Consistency

® Unix semantics

» Writes to an open file are immediately visible to others who have
the file currently open

» Option: single pointer advanced by all processes that have the
file open (single file image)
® Session semantics

» Writes to a file are not seen by other processes that currently
have the file open

» Writes to a file are sent to the file when it is closed, and are
visible to any processes that open the file after that point

© 1999 by Ethan L. Miller 10-24

