
© 1999 by Ethan L. Miller 9-1

Virtual Memory

• What is virtual memory, and why do we need it?
• Demand paging

» Description
» Performance

• Page replacement: when it doesn’t all fit into memory
» Algorithms
» Performance

• Allocating frames to processes
• Performance issues

» Thrashing
» Page size selection
» Writing efficient programs

• Virtual memory and segments

© 1999 by Ethan L. Miller 9-2

What is Virtual Memory?

• Virtual memory separates logical memory from physical
memory

» Keep only the “active” code & data for a program in memory
» Keep the remainder of the pages on disk, swapping them in

and out as necessary
» Allow a logical address space much larger than the available

physical memory
» Allows more programs to run by keeping inactive pieces of

code & data on disk

• Virtual memory can be used with
» Paging
» Segmentation

© 1999 by Ethan L. Miller 9-3

Demand Paging

• Simplest form of paging is demand paging: bring a page
into memory only when it’s actually referenced

» Requires less I/O (don’t get pages until they’re used)
» Requires less memory (not wasted on unused pages)
» More users (less memory per process)
» Faster response on process startup (no need to load entire

program before running)

• On reference to page not in memory:
» If not in memory (but on disk), fetch into memory
» If invalid reference (dereferencing NULL pointer), abort

process

© 1999 by Ethan L. Miller 9-4

Valid Bit in Page Table

• Associate a valid bit with
each page table entry

» 1 => page in memory
» 0 => page not in memory

• Set all valid bits to 0 initially
• During address translation,

check valid bit
» 1 => translation proceeds

normally
» 0 => page fault exception

(instruction doesn’t finish)

valid bitframe #

10x41f

10x241

10x03e

0

10x12a

0

0

10x3e0

...

© 1999 by Ethan L. Miller 9-5

How a Page Fault Works

• On reference to invalid page (valid == 0), cause an
exception called a page fault

• During a page fault, OS must decide if reference is valid
» Use another bit from the page table entry (not the valid bit)
» Check the “frame number” to see if the page is on disk (for

example, 0 == page not on disk either)

• OS allocates an empty page frame
• Read the page from disk into the just-allocated frame
• Modify the page table

» Insert the real frame number into the page table entry
» Change the valid bit from 0 to 1

• Restart the instruction
» Can be difficult with complex instructions!

© 1999 by Ethan L. Miller 9-6

What If There’s No Free Frame?

• After a system has been running for some time, all frames
will be allocated if there’s no way to free them

» Exiting processes free their frames
» How can the OS claim frames from still-running processes?

• Page replacement
» Find a page in memory that’s not in active use
» Swap it out (move it to disk)
» Mark the page table entry as invalid again
» A given page may be fetched into memory multiple times

• Page replacement algorithms
» Decide which page in memory to swap to disk

» Critical for good performance: OS wants to minimize page
faults

© 1999 by Ethan L. Miller 9-7

Demand Paging Performance

• Assume the following numbers
» Page fault rate p (0 => no page faults)
» Page fault time f, composed of

– Exception overhead (~ 1-10 us)
– Time to swap the old page out (~ 10 ms)
– Time to swap the new page in (~ 10 ms)
– Instruction restart overhead (~ 1-10 us)

» Memory access time t

• Effective access time for memory is then:
EAT = (1-p) * t + p * f

© 1999 by Ethan L. Miller 9-8

Demand Paging Performance: Example

• Basic performance numbers:
» Memory access time = 100 ns
» Disk access time = 10 ms
» Page being replaced is modified 40% of the time

– Only needs to be written to disk if it’s modified
» Page fault overhead is 20 us (excluding disk I/O time)
» Page faults occur every 100,000 instructions

• Page fault time
» 10000 us * (1 + 40% * 1) + 20 us = 14020 us

• Effective access time
» EAT = p * 14020 + (1-p) * 0.100
» EAT = 10-5 * 14020 + (1- 10-5) * 0.100 = 0.24 us = 240 ns

© 1999 by Ethan L. Miller 9-9

Page Replacement

• Modify page fault handler to include page replacement
» Prevents over-allocation of memory
» Centralizes code in one place

• Use modified (dirty) bit to keep track of changed pages
» Set bit to 0 each time page is swapped into memory
» Set bit to 1 each time page is written to
» Only swap to disk when page is “dirty” (dirty bit == 1)

• Store dirty bit in the page table entry
» TLB entries include the dirty bit and other bits used by paging
» Changes to status bits (such as dirty bit) occur only in TLB

entry
» TLB entries written back to page table when the entry is

replaced in the TLB

© 1999 by Ethan L. Miller 9-10

Page Replacement Algorithms

• A page replacement algorithm chooses the page to be
swapped out of memory

• Goal: get the lowest page fault rate
» Lower page fault rates mean better performance
» Compare algorithm’s page fault against “optimal” algorithm

• Evaluate the algorithm by running it on a particular
sequence of memory (page) references

» Compute the number of page faults on that sequence
» Compare the page fault rate with other algorithms, including

the optimal algorithm

• For these examples, we’ll use the reference string
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

© 1999 by Ethan L. Miller 9-11

Optimal Algorithm

• Optimal algorithm is the goal
all other algorithms are
measured against

• Rule: replace page that will
not be used for the longest
period of time

» Impossible to do in real OS -
requires future knowledge

» Other algorithms attempt to
figure out which page will be
used furthest in the future,
but may guess wrong

• Useful as a baseline for other
algorithms’ performance

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

4

5

© 1999 by Ethan L. Miller 9-12

First-In-First-Out (FIFO) Algorithm

• Rule: replace the page that
has been in memory the
longest

• Simple to implement
» Keep a circular list of frames
» Update a pointer to the next

frame to be replaced

• Belady’s Anomaly: more
frames can result in more
(not fewer) page faults!

» May be present for FIFO
replacement

» Can’t be present for LRU
replacement

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

1

5

2

3

4

5

1

2

3

1

4

2

5

3

4

9 page faults

10 page faults

© 1999 by Ethan L. Miller 9-13

Least Recently Used (LRU) Algorithm

• Rule: replace the page that
was used least recently

• Implementation
» Keep a counter in each

page table entry
» Copy the current clock into

the PTE when a reference is
made

» Search PTEs for the lowest
clock value to find the page
to replace

• Can be slow in real OS
» Searching through all those

PTEs takes time!
» Updating PTEs with the

current clock is slow

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4 3

5 4

5

© 1999 by Ethan L. Miller 9-14

Better LRU Implementation?

• Address problems with previous LRU implementation
» Searching for frame to replace is slow (requires scan of all

PTEs)
» Updating PTE with current clock can be slow w/o hardware

help

• Use a doubly-linked list of page numbers, where pages at
top of list have been used recently

» Move page to top of list when it’s referenced
» No search for replacement
» May be slow: 6 pointers changed on page reference

• Better still: combine the two methods
» Use clock for entries in TLB
» Update list in memory only when PTE is replaced in TLB

© 1999 by Ethan L. Miller 9-15

Approximating LRU

• Problem: LRU can be slow and needs hardware help
• Use a reference bit in each PTE

» Reference bit initially set to 0
» Reference bit set to 1 when page is referenced
» Replace a page with bit set to 0 if such a page exists

– May not be the least recently used

• Use the reference bit to approximate LRU
» Second chance replacement
» Clock algorithm

© 1999 by Ethan L. Miller 9-16

Clock Algorithm

• Keep a circular list of page
frames in memory

• Keep a pointer to a location
in the circular list

• Rule:
while (not done) {
 if (ref bit == 1) {
 replace this frame
 } else {
 set ref bit = 0
 leave page in memory &
 advance to next frame
 }
}

• Set ref bit = 1 when page is
referenced

1

1, 2, 3, 4, 5, 3, 2, 5, 1,5, 4

3

5

4 21 4

© 1999 by Ethan L. Miller 9-17

Page Replacement in Unix

• Problem with clock algorithm: slow replacement (dirty page
must be written out before new page brought in)

• Keep a circular list of frames as with clock algorithm
» Go through list of frames at a fixed rate

– If frame’s reference bit is 0
• Write it to disk (if dirty) and clear the dirty bit
• Place it into a pool of “available” pages & set valid bit

in PTE to 0
– If frame’s reference bit is 1, set the bit to 0

• On a page fault
» Search available pool for the desired page - if found, mark

PTE as valid and remove page from available pool
» If not found, replace any page in available pool with page

fetched from disk

© 1999 by Ethan L. Miller 9-18

Counting-Based Algorithms

• Keep a counter of the number of references that have been
made to each page

• LFU algorithm: replace page with the smallest count
• MFU algorithm: replace page with largest count, since page

with smallest count may have just been brought in and will
be used more in the future

• Problem: counts can only increase
• Solution: periodically go through PTEs and reduce counters

» Set counters back to 0

» Reduce counters by a factor of n

© 1999 by Ethan L. Miller 9-19

Allocating Frames to Processes

• Each process needs a minimum number of pages
» A single instruction might access more than one page
» Example:

VAX instruction add.w 70000(r1), 70000(r2), 70000(r3)
– Instruction might span 2 pages
– Each operand might span 2 pages
– Total page faults = 2 + 3 * 2 = 8 page faults!

» System must make sure that a process can execute such an
instruction if necessary

• Two basic allocation schemes:
» Fixed allocation
» Priority allocation

© 1999 by Ethan L. Miller 9-20

Fixed Allocation of Frames

• Equal allocation: allocate frames to processes evenly
» If there are 256 frames and 8 processes, allocate 32 frames

per process

• Proportional allocation: allocate frames according to the
size of the process (bigger process => more frames)

» Add up the total number of frames required by all running
processes

» Divide by the total number of available frames for paging
» Divide each process’s total frames by the result to compute

the total allocation for that process (but allocate minimum #)
» Example: p1 -> 100 frames, p2 -> 20 frames, p3 -> 40 frames

40 frames available
p1 gets 100*40/(100+40+20) = 25 frames
p2 gets 20 * 40/160 = 5 frames
p3 gets 40*40/160 = 10 frames

© 1999 by Ethan L. Miller 9-21

Priority Allocation of Frames

• Allocate frames to processes proportionally using priorities
rather than fixed allocation (size)

» Priority = number of recent page faults
» Priority = more “important” process

• If process Pi generates a page fault
» Select one of its own frames for replacement
» Select a frame from a process with a lower priority

© 1999 by Ethan L. Miller 9-22

Local vs. Global Frame Allocation

• Local replacement
» Replacement algorithm is run only on frames allocated to the

process
» More “suitable” frames in other processes are ignored
» Easier bookkeeping
» Penalizes processes that behave poorly (too many page

faults)

• Global replacement
» Replacement algorithm run over entire set of frames in all

processes
» Can be slower than local replacement
» Usually leads to globally better behavior
» Individual processes may be slowed down unnecessarily

© 1999 by Ethan L. Miller 9-23

Thrashing in Virtual Memory

• Not “enough” pages leads to very high page fault rates
» Low CPU utilization - CPU always waiting for pages from disk
» Potential OS problems

– OS sees low CPU utilization
– OS adds another process to better utilize CPU
– Thrashing gets even worse as there are more processes

fighting over too little memory

• Thrashing describes a process (or system) that spends all
of its time swapping pages in and out

• How few is “too few” pages for a process?

© 1999 by Ethan L. Miller 9-24

Characterizing Thrashing

• Paging works because of
locality

» Locality is the pages
“currently” in use by a
process

» Process moves from one
locality to another

» Localities may overlap

• Thrashing occurs when the
current localities for all
processes don’t fit into
physical memory

» CPU utilization drops
» I/O rate increases

Number of processes &
total locality size

C
P

U
 u

ti
liz

at
io

n

thrashing

© 1999 by Ethan L. Miller 9-25

Avoiding Thrashing: Working Sets

• Working set is the group of pages “currently” in use by a
given process

» “Currently” means the page was accessed within the past n
instructions by this process

» The n instruction window is called the working set window

• WSSi (Pi’s working set) is all of the pages accessed in the
most recent n instructions

» If window is too small, it won’t encompass the current locality
» If window is too large, it will encompass several localities and

possibly waste space
» If window is infinitely large, it will include the whole program

• Goal: keep the sum of the sizes of WSSi below the total
available physical memory

• If all WSSi won’t fit into memory, suspend a process

© 1999 by Ethan L. Miller 9-26

Calculating Working Set Size

• Exact calculation of working set size is difficult
• Approximate calculation with an interval timer, reference bit

per page, and history of reference bits for all pages
» Current reference bit set to 1 on page reference
» History (values at previous interrupts) also stored in PTE

• For example, working set window is 100,000 instructions
» Timer interrupts every 100,000 instructions
» For each page in the process

– Shift history bits left by 1 position
– Insert the value of the current reference bit
– Set the current reference bit to 0

» If any history bits are 1, page is in current working set

© 1999 by Ethan L. Miller 9-27

Issues With Working Sets

• Method for calculating working set has problems
» May not be completely accurate
» May be somewhat slow

• Interrupt more often
» Better accuracy
» Slower

• Keep more history bits
» Better accuracy
» More space required

• Use clock-based methods (discussed earlier) to
approximate working set algorithms

• Use page-fault frequency to figure out working set size

© 1999 by Ethan L. Miller 9-28

Using Page Fault Frequency

• Each process has an
acceptable page fault rate

» If actual rate is higher, add
more frames

» If actual rate is lower,
remove frames

• Don’t remove frames unless
other processes need them!

» Low page fault rate is good!
» Allow processes to keep

pages until they’re needed
elsewhere

Number of frames

acceptable
fault rate

fault rate too high
add more frames

low fault rate
decrease frames

if needed elsewhere

© 1999 by Ethan L. Miller 9-29

Prefetching Pages

• Demand paging is good, but may result in excessive delay
» User must wait while process fetches needed pages
» Solution: fetch pages before they’re needed

• Prefetch pages that may be needed soon
» Pages near the current page (1-2 pages ahead or behind)
» Pages the program says it will need soon

• Advantage: less delay seen by process & user (need pages
already in memory)

• Disadvantage: may replace useful pages with pages that
will never be used

© 1999 by Ethan L. Miller 9-30

Selecting a Page Size

• Consider many issues when selecting a page size
» May not be a single “optimal” page size
» Tradeoffs between different factors

• Fragmentation
+ Smaller pages have less internal fragmentation

• Page table size
+ Larger pages require smaller page tables

• I/O overhead
+ Larger pages have less I/O overhead per byte
+ Smaller pages require less I/O for a single page fault

• Locality
+ Larger pages require fewer fetches for a given locality
+ Smaller pages include less “inactive” memory

© 1999 by Ethan L. Miller 9-31

User Programs and Virtual Memory

• Program code interacts with
virtual memory system

» Interaction hidden from user
» Performance problems not

hidden!

• Program to add two 2-D
arrays together

» Arrays stored in C order
» Page size is 4 KB
» Only 2 data frames

available to process

• Loop order makes a huge
difference in performance!

for (j=0; j<1024; j++) {
 for (k=0; k<1024; k++) {
 X[j][k] += Y[j][k];
 }
}

for (k=0; k<1024; k++) {
 for (j=0; j<1024; j++) {
 X[j][k] += Y[j][k];
 }
}

int X[1024][1024], Y[1024][1024];

X: 1024 page faults
Y: 1024 page faults

X: 1024 x 1024 page faults
Y: 1024 x 1024 page faults

© 1999 by Ethan L. Miller 9-32

Demand Segmentation

• Some systems can support segments but not paging
» Trap when unloaded segment is accessed
» No address translation for paging

• Use methods similar to those used in paging
» Valid bit in segment descriptor to indicate a segment loaded

into memory
» Segment fault if segment not in memory

– Segment loaded into memory (space found by looking
through list of memory holes)

– Segment table updated to show valid segment
» Deallocate segments no longer in use

