CMSC 421 Section 0101
Fall 1999

Professor Ethan Miller
el ma@see. unbc. edu
http://ww. csee. unbc. edu/ ~el nf

Course Information

® Course staff
» Professor: Dr. Ethan Miller (office in 225H ECS)
» Lecturer (Tuesday classes): Naomi Avigdor

» TA: Zhou Zhang

» Email: {el m navi gd1, zzhang} @see. unbc. edu
® Office hours:

» Professor Miller: Thu 1-2, Fri 11-noon

» Zhou Zhang: Mon 4-5, Tue 4-5
® Web page:

» http://ww:. csee. unbc. edu/ courses/
under gr aduat e/ CM5C421/ Fal 199/0101/

» Assignments, slides, and notes all available on Web page
» Check the Web page regularly!

M

M

© 1999 by Ethen L. Miller

12

Course Requirements

® Two exams
» Midterm (late October)
» Final exam
® Projects
» 3-4 projects during the semester
» ~ 3 weeks per project
» Will require lots of C programming
® Homework
» 6 homeworks during the semester
» 1 week per homework
» Graded, but individual homeworks not required to pass class
» Hand in online using submi t

© 1999 by Ethen L. Miller 13

Grading

® Final grades based on:
» Projects: 35% (distributed evenly across all projects)
» Homeworks: 17% (distributed evenly across all homeworks)
» Midterm: 20%
» Final: 25%
» Class participation: 3%
® Grade ranges:
» A: 89% - 100%
» B:79% - 88%
» C:69% - 78%
» D: 60% - 68%
® To pass the class, you must take both exams and hand in
a reasonable attempt at all projects

© 1999 by Ethen L. Miller 14

Project Information

® Write the core of an operating system
» Runs on simulated hardware (DLX emulator)
— Emulator runs on Linux
— Cross-compiler runs on Linux
» Implement
— Synchronization
— User-level processes
— Virtual memory
— File system
® |earn about operating system structures
® Work with a partner on a big project
» Grades for both people are the same...

© 1999 by Ethen L. Miller

15

Project Logistics

For each project, hand in

» Detailed design description (due 1 week into project)

» Code files used to implement the project

® Use UMBC submni t program

® Work may be done on campus or elsewhere
» Code must work on campus!
» Try out code before handing it in

® Projects done individually or in pairs

© 1999 by Ethen L. Miller

16

Class Outline

® Introduction and historical perspective

® Process Management, IPC & Threads

® Synchronization: semaphores and monitors, deadlocks
® Process Scheduling

® Address spaces, multiprogramming, and 1/O

® Memory management, address translation, and virtual
memory

® File systems & Secondary Storage
® Security and Cryptography
® Distributed systems

© 1999 by Ethen L. Miller 17

What' s an Operating System?

® A program that runs on the “raw” hardware
» Acts as an intermediary between computer and users

» Standardizes the interface to the user across different types
of hardware

® Operating system goals:
» Execute user programs
» Make the computer system easier to use
» Manage hardware resources
® Potentially conflicting goals:
» Use hardware efficiently
» Give maximum performance to users

© 1999 by Ethen L. Miller 18

Pieces of a Computer System

® Hardware: provides basic resources
» CPU
» Memory
» /0 devices (networks, disks, display, etc.)
® Operating system: controls and coordinates hardware
usage
Applications: allow users to solve specific problems
» Games
» “Office” apps (spreadsheets, databases,word processing,...)
» Development applications (compilers, etc.)
® (Users)
» People or machines that use the computer system

© 1999 by Ethen L. Miller 19

System Components

User 1 User 2 User 3 User 4
y y y y
compiler word processor spreadsheet game (Myth I1)
applications

v

operating system

v

computer hardware

© 1999 by Ethen L. Miller 1-10

Operating System Terms

® Kernel
» The basic “program” that's always running
» Runs other (application) programs
® Resource
» Commodity to be allocated among applications & the
operating system
» Operating system manages this allocation
® Multiprogramming
» The ability to run more than one job at a time
Multitasking (time sharing)

» The ability to run multiple jobs and switch quickly between
them

» Gives the illusion of having an entire computer to yourself

© 1999 by Ethen L. Miller 111

Early Systems. Bare Machines

® Large machines run from consoles
» Single user system (no multiprogramming)
» Programmer was operator & user
» Programmed by punched tape or punch cards
® Early software
» Development tools (assemblers, later compilers)
> System tools (linkers & loaders)
> Software libraries
» Device drivers
® Secure
Used hardware inefficiently
» Too much setup time per task
» CPU wasted while task waited for /O

M

M

© 1999 by Ethen L. Miller 112

Next Step : Simple Batch Systems

® Full-time operator
» Users didn’t run the computer directly
» Operator batched similar jobs together
® Job sequencing
» Card reader could load in next job while current job running
» Control automatically transferred from one job to another
— First rudimentary operating system
® Full-time resident “operating system” code (monitor)
» Initial control when machine turned on
» Transfer control to job when loaded
» Return control to monitor when job finished

© 1999 by Ethen L. Miller 113

|ssues with Simple Batch Systems

® How does the monitor know job details?
» Fortran vs. assembly language?
» Which resident job to execute next?
® How does the monitor distinguish information
» End of one job from the start of another job?
» Job program from job data?
® Solution: control cards
» Special cards that describe the other cards
— $DATA, $JOB, $END, $FTN
» Special cards that provide instructions for the monitor
— $RUN

» Distinguished from “normal” cards with special characters in
particular columns

© 1999 by Ethen L. Miller 1-14

Resident Monitor

® Program that runs other programs

» Control card interpreter : reads control cards and carries out
their requests

» Loader : loads system programs and regular applications into
memory

» Device drivers: know how to interface with particular devices
on the system

® Problem: slow performance
» 1/0 and CPU can't overlap
» Card reader very slow
® Solution: offline operation
» Do all I/O to or from magnetic tapes (reasonably fast)
» Card reading and printing done from tapes offline

© 1999 by Ethen L. Miller 1-15

Tapes & Off-Line Operation

® Use simpler hardware to =)
» Read cards onto tape reoder | 4 i

» Rgad output from tape to S i
prlnter. processor \Q |

® Keep main computer free for !
actual data processing Printer ¢ | - i

® No changes to applications el |
to allow off-line processing ,/’/Tapedrives i

® Real gains <
» Utilize main computer more W ______ L2
efficiently
» Multiple card readers &

printers for a single

Main computer
computer

© 1999 by Ethen L. Miller 1-16

Spooling

® Simultaneous peripheral operation on-line
» Overlap computation of one job with the 1/O for another job
» Write jobs onto disk while working on another

» Output result of previous job onto disk while working on
another

® Keep ajob pool

» Set of jobs on disk ready to run

» Allow CPU to select next job to run by scheduling algorithm
® As long as there are enough jobs, CPU will be utilized well

© 1999 by Ethen L. Miller 117

Multiprogrammed Batch Systems

® Keep several jobs in memory at once
» Multiplex CPU among them
» Allow one job to run while another is waiting for I/0
® Benefit: CPU never idle if there are enough jobs
» Better CPU utilization
» Better job turnaround

CPU usage 1/0 usage
Job 0 | |
Job 1 |
Job 2

© 1999 by Ethen L. Miller 118

Features Needed for Multiprogramming

® 1/O routines supplied by the operating system
» Manage the 1/O resources between jobs
» Provide a standard interface to devices
® Memory management
» Allocate memory between jobs
» Prevent jobs from interfering with one another
® CPU scheduling
» Decide which job gets the CPU next
® |/O device reservation
» Allocate some devices (printer, etc.) to a particular job

© 1999 by Ethen L. Miller 1-19

Modern Time Sharing Systems

® CPU multiplexed among several jobs kept in memory
» Switching occurs rapidly (a few milliseconds per job)

» Jobs moved in and out of memory to keep active jobs
available

® Operating system takes commands from users
» System executes user’s job
» System requests new command from console
® File system gives users a place to store long-term data

® Result: system that gives users the illusion of having the
entire machine
» Cost-effective: users don’t need whole machine most of the
time
» Allows resource sharing (only one printer needed...)

© 1999 by Ethen L. Miller 1-20

10

Personal Computers

® Computers cheap enough to put one (or several) on each

person’s desk (Macs, PCs)

» No need to time share the CPU?

® Design criteria

» Cost is very important - must be inexpensive

» Ease of use is crucial
» Efficiency not as important

® Techniques from time sharing systems may not be fully
implemented in personal computers

» Memory protection
» Full job scheduling

® Advanced techniques becoming common in personal

computer operating systems

© 1999 by Ethen L. Miller

121

Evolution of OS Features

® Computers have become
cheaper over time

® Software does both more

1950 60 1970
MULTICS

1980 1990 |

and less
» Early systems did
everything
» Later systems more
specialized
® QOperating systems
designed to meet specific
needs of the computer

no compilers time
software shared multiuser

batch

resident
monitors

1960 1970 « UNIX 1980 1990

distributed
systems

multiprocessor

fault tolerant

no compilers

software time multiuser multiprocessor

resident ~ shared
monitors

1970

fault toleran

1980 UNIX 1990

no compilers
software
resident
monitors

interactive multiprocessof
multiuser

network

no
software
compilers|

© 1999 by Ethen L. Miller

1-22

11

Operating Systems for Multicomputers

® Many computer systems have multiple CPUs
» Several CPUs in a single box (parallel computing)
» Several CPUs connected by networks (distributed computing)
® Operating systems have new duties
» Manage resources across several CPUs
» Move jobs from one CPU to another?
® Goal: make multiple CPUs as easy to use as a single CPU
» Create the illusion of a highly reliable, very fast single CPU
» Allow users to use any CPU without noticing any difference
» Balance the work across CPUs and other resources

© 1999 by Ethen L. Miller 1-23

Real-Time Operating Systems

® Some computers must respond in a particular time interval

» Dedicated application (robot, anti-lock brakes, airplane
cockpit systems, medical appliances)

» Well-defined time constraints
® Two kinds of real-time systems
» “Hard” real-time systems
— System must respond in a fixed time
— Falilure to do so means the system fails
— Use only ROM & semiconductor memory
» “Soft” real-time systems

— Some processes have higher priorities and should be
done as quickly as possible

— Used for less time-critical applications (virtual reality,
multimedia) where minor delays are OK

© 1999 by Ethen L. Miller 1-24

12

Modern Operating Systems

® Time sharing systems
» True time sharing (users protected from one another)
» Allow hundreds (or more) users per system
» Very complex: up to millions of lines of code
» UNIX (and derivatives)
» IBM MVS
» Windows NT

® Personal computers

> Memory protection recent (or not present)

> Multitasking

> Macintosh OS

» Windows 95/98

» Linux?

M

M

M

© 1999 by Ethen L. Miller

1-25

13

