
© 1999 by Ethan L. Miller 20-1

Security

• What’s the problem that security tries to solve?
• Authentication
• Encryption
• Threats to the operating system

» Program threats
» System threats
» Intrusion detection



© 1999 by Ethan L. Miller 20-2

The Security Problem

• Computer systems must be protected from external threats
» Unauthorized access
» Malicious modification and/or destruction
» Accidental inconsistencies

• Fortunately, easier to protect against accidents than malicious
intruders

» Accidents aren’t often repeated
» Intruders may try to exploit several weaknesses at once, not

likely to happen by accident



© 1999 by Ethan L. Miller 20-3

Authentication

• System needs to determine that an external entity is what it
claims to be

» Human users
» Other computers

• Often accomplished by passwords
» Only actual entity would know the password
» Passwords must be difficult to guess
» Passwords should be changed often (or they might be

discovered)
» Invalid login attempts should be logged to track people trying to

log in “illegally”



© 1999 by Ethan L. Miller 20-4

Dealing With Passwords

• Passwords should be memorable
» Users shouldn’t need to write them down!
» Users should be able to recall them easily

• Passwords shouldn’t be stored “in the clear”
» Password file is often readable by all system users!
» Password must be checked against entry in this file

• Solution: use hashing to hide “real” password
» One-way function converting password to meaningless string of

digits (Unix password hash, MD5)
» Difficult to find another password that hashes to the same

meaningless string
» Knowing the hashed value and hash function gives no clue to

the original password



© 1999 by Ethan L. Miller 20-5

Password Issues

• Passwords can be guessed
» Hackers can get a copy of the password file
» Run through dictionary words and names

– Hash each name
– Look for a match in the file

• Solution: use “salt”
» Random characters added to the password before hashing
» Salt characters stored “in the clear”
» Increase the number of possible hash values for a given

password
– Actual password is “pass”
– Salt = “aa” => hash “passaa”
– Salt = “bb” => hash “passbb”

» Result: cracker has to try many more combinations



© 1999 by Ethan L. Miller 20-6

What’s Encryption Good For?

• Authentication is usually one-way: once hashed, the original
text can’t be recovered

• Encryption is two-way: the original text can be recovered from
the encrypted text by decryption

• Encryption can be used to:
» Protect information on a computer system from seeing private

information
» Protect information in transit between computers
» Provide proof that a message was sent by a particular entity: if

encrypted by a key that only A & B know, A knows that B must
have sent the message



© 1999 by Ethan L. Miller 20-7

Encryption Basics

• Algorithms consist of
» Encryption algorithm E & decryption algorithm D
» Encryption & decryption keys (may be the same)
» D(kd,E(ke,m)) = m

• Good encryption techniques
» Allow simple encryption & decryption by users
» Rely not on the secrecy of the algorithm but instead on the

secrecy of the encryption key
» Prevent intruders from easily finding the encryption key
» Can use variable length keys; longer keys are harder to crack

• Two basic kinds of encryption
» Shared-secret (single key): single key (or set of keys) known to

both parties
» Public key encryption: half of key is made public, and the other

half is kept private



© 1999 by Ethan L. Miller 20-8

Shared Secret Encryption

• Sender and receiver share keys
» Key distribution method must be secure…
» Key must be large and difficult to guess

• Doubling key size may make code twice as hard to crack
• Example: Data Encryption Standard (DES)

» Uses 56-bit keys
» Encrypts data a block at a time
» Same key is used to encrypt & decrypt
» Keys used to be difficult to guess

– Needed to try 255 different keys, on average
– Modern computers can try millions of keys per second with

special hardware
– For $250K, EFF built a machine that broke DES quickly



© 1999 by Ethan L. Miller 20-9

Shared Secret: One-Time Pad

• For unbreakable communication, use one-time pad
» Truly random key as long as message
» XOR bits of key with bits of message

• Code is unbreakable because
» Key could be anything
» Without knowing key, message could be anything with the

correct number of bits in it

• Difficulty: distributing key, often as hard as distributing
message

• Difficulty: generating truly random bits
» Can’t use computer random number generator!
» May use physical processes (radioactive decay, lava lamp…)



© 1999 by Ethan L. Miller 20-10

Public Key Encryption

• Instead of using a single shared secret, keys come in pairs
» One key of each pair distributed widely (public key), kp

» One key of each pair kept secret (private or secret key), ks

» Two keys are inverses of one another, but not identical
» Encryption & decryption are the same algorithm, so

E(kp,E(ks,m) = E(ks,E(kp,m) = m

• Currently, most popular method involves primes and
exponentiation

» Difficult to crack unless large numbers can be factored
» Very slow for large messages



© 1999 by Ethan L. Miller 20-11

More on Public Key Encryption

• Public, private key pair consists of kp = (d,n) & ks = (e,n)
» n = p x q
» d is a randomly chosen integer with GCD (d, (p-1) x (q-1)) = 1
» e is an integer such that (e x d) MOD (p-1) x (q-1) = 1

• p & q aren’t published, and it’s hard to find them: factoring
large numbers is thought to be NP-hard

• Public key is published, and can be used by anyone to send a
message to the private key’s owner

• Encryption & decryption are the same algorithm:
E(k,m) = mk MOD n

» Methods exist for doing the above calculation quickly, but...
» Exponentiation is very slow
» Public key encryption not usually done with large messages



© 1999 by Ethan L. Miller 20-12

Pretty Good Privacy (PGP)

• Uses public key encryption
» Facilitates key distribution
» Allows messages to be sent encrypted to a person (encrypt with

person’s public key)
» Allows person to send message that must have come from her

(encrypt with person’s private key)

• Problem: public key encryption is very slow
• Solution: use public key encryption to exchange a shared key

» Shared key is relatively short (~1024 bits)
» Message encrypted using shared key encryption

• PGP can also be used to authenticate sender
» Use one-way hash on message, leave message unencrypted
» Encrypt the hash with user’s private key
» Anyone can prove that user sent the message



© 1999 by Ethan L. Miller 20-13

Program Threats

• One type of threat is from programs that a user runs that do
unexpected things

» Trojan horse
» Trap door

• Trojan horse
» Program that looks like it does something useful
» Program actually does something harmful
» Example: put a file called “ls” into someone’s home directory

which actually deletes all of their files

• Trap door
» Program that really does its job, but…
» Program has a “security hole” that allows a particular user

additional privileges
» Example: author of “login” program makes it so that the account

name “steve” can log in without any password



© 1999 by Ethan L. Miller 20-14

New Kinds of Program Threats

• Old way: computers only ran programs from local, trusted
sources

» Local disk
» Files available on local file server

• New way: computers run programs downloaded from random
places on the Web

» Shareware / freeware for your PC
» Java bytecode files to do almost anything

• How can these programs be trusted?
» Don’t let them use (and especially modify) any crucial data
» Have them signed by an authority you trust, and use

cryptographic techniques to ensure the signature is genuine



© 1999 by Ethan L. Miller 20-15

System Threats

• Unlike program threats, system threats without requiring a
user to explicitly start them up

» Viruses
» Worms

• Viruses
» Code fragments that exploit system weaknesses to run their own

code instead of “normal” code in a program
– Code replaces the normal instructions in a program
– Most common in PC-type computers

» Systems may be “infected” from many sources
– Software loaded from disk
– E-mail & other network traffic

» Viruses may be benign or malevolent



© 1999 by Ethan L. Miller 20-16

Worms

• Self-replicating independent code (virus::worm ==
virus::bacteria)

» Worm installs itself via weakness in system
– Bug in networking code
– Electronic mail that’s actively decoded

» Worm runs on its own as a “regular” process

• Famous example: Internet worm (1988)
» Used vulnerability in finger & sendmail to insert its code into

specific types of Unix OS
» Sucked up CPU time on infected machines
» Nearly brought the Internet to its knees



© 1999 by Ethan L. Miller 20-17

Monitoring for Threats

• Check for patterns of suspicious (but normal) activities
» Passwords mistyped
» Excessive connections to the computer from somewhere

• Use logs of references to objects or services
» Check ftp or Web log for outgoing file names & destinations
» Check login log for suspicious logins (middle of the night, user

was out of town, etc.)

• Scan files & programs for evidence of change
» Check modification dates
» Compare against unchangeable files (on CD-ROM, perhaps)
» Compare digital signature to value stored off-line to see if the file

has changed



© 1999 by Ethan L. Miller 20-18

Specific Things to Monitor

• Web, ftp, and mail logs (for unusual activity)
• Login attempts (successful & unsuccessful)
• Connections to the computer (successful & unsuccessful)
• Long-running processes
• Improperly protected files & directories
• Modified or added files in system directories

» Look for invisible or otherwise innocuous files
» Check for programs that may have been replaced

• Changes in the program search path (especially for root)



© 1999 by Ethan L. Miller 20-19

Why Is Security So Difficult?

• Security is hard because
» Systems are extraordinarily complex
» System administrators can be lazy

– Configuration files may, by default, allow lax security
– Bug fixes may not be applied when they’re available

» Attackers are both smart and persistent
– Try multiple methods in combination
– Try methods out on local machines first

• Security is an ongoing battle between the offense (people
trying to break in) and defense (those defending computer
systems)


