Implementing File Systems

Basic file system structure

Allocating disk blocks to files
» Deciding which blocks to include in a file
» Keeping track of the blocks in a file

Managing free space on the disk

Implementing directories
» Translating a human-readable name to a file identifier
» Keeping track of file metadata

Improving file system efficiency & performance
» Using less disk space
» Making the file system faster

Recovery: when file systems go bad

© 1999 by Ethan L. Miller 11-1

Basic File System Structure

® Afileis
» A logical storage unit, tracked
as a whole by the file system

» A collection of logically related
information
® File system resides on
» Disks (usually)
» Tape (occasionally)
» Memory (RAM disk, flash
memory)
® File system organized into
logical layers: allows different
file systems to share code

® File metadata is stored in a file
control block (called an inode
in Unix)

© 1999 by Ethan L. Miller

OS interface

Directory routines:
lookup file, createfile, etc.

U

File organization routines:
read & write file blocks

Low-level routines:
alocate & free disk blocks

4

Devicedrivers

Hardware (disks, etc.)

11-2

Using a File System: The OS View

® Opening a file
» Find the file and check to ensure that the user is allowed to
perform the desired operation (read, write, etc.)

» Allocate an entry in the “open file” table and return a “handle” to
it to the user (file descriptor)

» Process-only open file table vs. global open file table
® Closing a file
» \Write out all changes to the metadata
» Deallocate the file control block in memory
® Mounting a file system: make a file system available to users
» ldentify the file system’s position in the directory structure
» Locate the directory information on the disk

» Build structures in memory that allow the OS to use the file
system

© 1999 by Ethan L. Miller 11-3

Allocating Blocksto Files

® Files contain data stored in many file blocks
» File block is minimum unit of disk space allocation in file system
» File block size may be larger than disk block size
® Goal: keep track of which blocks contain the data in this file
» Allow both sequential and random access efficiently
» Use as little space as possible
» Allow files to grow (shrink not necessary, only truncate)
® Allocation decisions require
» How are blocks on disk grouped?

» How can the file system figure out which disk block corresponds
to a particular file block?

® For all these examples, assume file blocks are 1024 bytes

© 1999 by Ethan L. Miller 11-4

Contiguous Allocation

Data in each file is stored in consecutive blocks on disk
Simple & efficient indexing
» Starting location (block #) on disk (st art)
» Length of the file in blocks (I engt h)
Random access well-supported
Difficult to grow files
» Must pre-allocate all needed space
» \Wasteful of storage Iif file isn’t using all of the space
Logical to physical mapping is easy
bl ocknum = (pos / 1024) + start;
of fset 1 n _block = pos % 1024,

© 1999 by Ethan L. Miller 11-5

Linked Allocation

® Fileis a linked list of disk
blocks

» Blocks may be scattered
around the disk drive

» Block contains both pointer to
next block and data

» Files may be as long as
needed

® New blocks are allocated as
needed
» Linked into list of blocks in file

» Removed from list (bitmap) of
free blocks

© 1999 by Ethan L. Miller

name start end dSize
foo 4 5 3
bar 1 12 4
4
0 119 2)5]| 3
4 51| \6 7 2] e
8 9 10 14| 11
(ﬂ 13 14 |12]| 15
)

11-6

Finding Blocks: Linked Allocation

® Directory structure is simple
» Starting address looked up from directory
» Directory only keeps track of first block (not others)
® No wasted space - all blocks can be used
® Random access is difficult: must always start at first block!

® Logical to physical mapping is done by
bl ock = start;
of fset 1 n _block = pos % 1020;
for (] =0; |J < pos / 1020; j++) {
bl ock = bl ock->next;
}

» Assumes that “next” pointer is stored at end of block
» May require a long time for seek to random location in file

© 1999 by Ethan L. Miller 11-7

Using a Block Index for Allocation

® Store file block addresses in
an array

» Array itself is stored in a disk
block

» Directory has a pointer to this
disk block

» Non-existent blocks indicated
by -1

® Random access easy
® Limit on file size?

© 1999 by Ethan L. Miller

name index size

foo 7 3

1 4

13

14

15

11-8

Finding Blocks with Indexed Allocation

® Need location of index table: look up in directory

® Random & sequential access both well-supported: look up
block number in index table
® Space utilization is good
» No wasted disk blocks (allocate individually)
» Files can grow and shrink easily
» Qverhead of a single disk block per file
® Logical to physical mapping is done by
bl ock = i ndex[bl ock % 1024];
of fset _in_block = pos % 1024,

® Limited file size: 256 pointers per index block, 1 KB per file
block -> 256 KB per file limit

© 1999 by Ethan L. Miller 11-9

Larger Files with Indexed Allocation

® How can indexed allocation allow files larger than a single
iIndex block?

® Linked index blocks: similar to linked file blocks, but using
iIndex blocks instead
® Logical to physical mapping is done by
| ndex = start;
bl ocknum = pos / 1024,
for (Jj = 0; J < blocknum/255); j++) {
| ndex = I ndex->next;
}
bl ock = I ndex[bl ocknum % 255] ;
of fset _in_block = pos % 1024,

® File size is now unlimited
® Random access slow, but only for very large files

© 1999 by Ethan L. Miller 11-10

Two-Leve Indexed Allocation

® Allow larger files by creating an index of index blocks
» File size still limited, but much larger
» Limit for 1 KB blocks = 1 KB * 256 * 256 = 226 bytes = 64 MB
® Logical to physical mapping is done by
bl ocknum = pos / 1024,
| ndex = start[blocknum/ 256)];

bl ock = I ndex[bl ocknum % 256]
of fset _Iin_block = pos % 1024,

» Start isthe only pointer kept in the directory
» QOverhead is now at least two blocks per file

® This can be extended to more than two levels if larger files
are needed...

© 1999 by Ethan L. Miller 11-11

Unix FFS Allocation Scheme

protection mode

owner & group | — datal
timestamps — > datal
SIZE — datal
block count
data
direct blocks ‘)
: —» datal

single indirect

double indirect

triple indirect

Inode

© 1999 by Ethan L. Miller

data

11-12

More on Unix FFS

® First few block pointers kept in directory
» Small files have no extra overhead for index blocks
» Reading & writing small files is very fast!

® Indirect structures only allocated if needed

® For 4 KB file blocks (common in Unix), max file sizes are:
» 48 KB in directory (usually 12 direct blocks)
» 1024 * 4 KB = 4 MB of additional file data for single indirect

» 1024 * 1024 * 4 KB = 4 GB of additional file data for double
indirect

» 1024 * 1024 * 1024 * 4 KB = 4 TB for triple indirect
® Maximum of 5 accesses for any file block on disk

» 1 access to read inode & 1 to read file block

» Maximum of 3 accesses to index blocks

» Usually much fewer (1-2) because inode in memory

© 1999 by Ethan L. Miller 11-13

Block Allocation with Extents

® Reduce space consumed by index pointers

» Often, consecutive blocks in file are sequential on disk

» Store <block,count> instead of just <block> in index

» At each level, keep total count for the index for efficiency
® Lookup procedure is:

» Find correct index block by checking the starting file offset for
each index block

» Find correct <block,count> entry by running through index block,
keeping track of how far into file the entry is

» Find correct block in <block,count> pair

® More efficient if file blocks tend to be consecutive on disk
» Allocating blocks like this allows faster reads & writes
» Lookup is somewhat more complex

© 1999 by Ethan L. Miller 11-14

Managing Free Space: Bit Vector

Keep a bit vector, with one entry per file block

» Number bits from 0 through n-1, where n is the number of file
blocks on the disk

» If bit[j] == 0, block j is free
» If bit]j]] == 1, block | is in use by a file (for data or index)
If words are 32 bits long, calculate appropriate bit by:

wor dnum = bl ock / 32:
bi t num = bl ock % 32;:

Search for free blocks by looking for words with bits unset
(words != Oxffffffff)

Easy to find consecutive blocks for a single file

Bit map must be stored on disk, and consumes space
» Assume 4 KB blocks, 8 GB disk => 2M blocks
» 2M bits = 2% bits = 218 bytes = 256KB overhead

© 1999 by Ethan L. Miller 11-15

Managing Free Space: Linked List

® Use a linked list to manage free blocks
» Similar to linked list for file allocation
» NoO wasted space for bitmap

» NO need for random access unless we want to find consecutive
blocks for a single file

® Difficult to know how many blocks are free unless it’s tracked
elsewhere in the file system

® Difficult to group nearby blocks together if they're freed at
different times
» Less efficient allocation of blocks to files

» Files read & written more because consecutive blocks not
nearby

© 1999 by Ethan L. Miller 11-16

| ssues with Free Space Management

® OS must protect data structures used for free space
management
® OS must keep in-memory and on-disk structures consistent

» Update free list when block is removed: change a pointer in the
previous block in the free list

» Update bit map when block is allocated

— Caution: on-disk map must never indicate that a block is free
when it’s part of a file

— Solution: set bit[j] in free map to 1 on disk before using
block[j] in a file and setting bit[j]] to 1 in memory

— New problem: OS crash may leave bit[j] == 1 when block
Isn’t actually used in a file

— New solution: OS checks the file system when it boots up...

® Managing free space is a big source of slowdown in file
systems

© 1999 by Ethan L. Miller 11-17

lmplementing Directories

® Two types of information
» File names
» File metadata (size, timestamps, etc.)

® Basic choices for directory information
» Linear list of files (often itself stored in a file)
— Simple to program
— Slow to run
» Hash table: name hashed and looked up in file
— Decreases search time: no linear searches!
— May be difficult to expand
— Can result in collisions (two files hash to same location)
» Tree structure
— Either of above choices in a tree structure
— Natural choice for graph-based directories (like Unix)

© 1999 by Ethan L. Miller 11-18

Directory Structuresin Unix

® Information stored in two places
» File metadata stored in inodes
» File names stored in directories (special kind of file)

® Information in directories
» File name
» Inode number (used to look up metadata to find file data)
» Pointers to subdirectories look the same as files!

® Inodes
» Stored in arrays spread throughout the disk (cylinder groups)

» Indexed linearly by inode number: file system can quickly locate
an inode if its number is known

» Limited to a certain number, determined when the file system is
put onto the disk (make sure there are enough!)

© 1999 by Ethan L. Miller 11-19

File System Performance

® Many factors determine file system performance
» Disk allocation algorithms
» Directory management
— Location of directories
— Type of information stored in directories

® Performance can be improved by

» File system cache: store frequently used information (directory &
file data) in main memory instead of going to disk each time

» Read-ahead: read blocks past current read point without being
explicitly asked, and cache them in memory for later use

» Delayed write: hold written blocks in memory rather than writing
them immediately to disk

— Blocks may change again before being written
— Files may be deleted before they’re actually written

— Caution: more exposure to loss of data from OS crash
© 1999 by Ethan L. Miller 11-20

Improving Unix FS Performance

® Cache commonly used blocks in main memory
» File data blocks
» Inode information for both open and recently open files
® Delay writes to disk by up to 30 seconds
» Many files are deleted before then (e.g., compiler temporaries)
» Other files have several writes within that time
® Read one block ahead of current request
» Block may be read into memory before next request arrives
» Subsequent request may be satisfied immediately
» May increase disk utilization (some reads go unused)
® Allocate file data blocks near the file’s inode
» Reduce seek time (more on that in a bit)
» Reduce time to allocate new blocks (look in smaller area)
» Spread many files over disk by spreading inodes (balance load)

© 1999 by Ethan L. Miller 11-21

When File Systems Go Bad

® File systems can have problems if the OS or disk fails
» Data in memory wasn’t written out in time
» File operation was only partially completed
» Data on the disk was completely wiped out by disk failure
® Programs check for file system consistency
» Make sure every block is either free or in exactly one file
» Make sure directory structure is consistent
® Backup devices (tape, second disk, etc.) hold copies of data
» System utilities back up data on a regular basis
— Backup all files (occasionally)
— Backup modified files (more often)
» Data may be restored from backup if all else fails
» Files restored from backup if they’re accidentally erased

© 1999 by Ethan L. Miller 11-22

