
© 1999 by Ethan L. Miller 10-1

File System Interface

• What is a file?
• How can a file be accessed?

• How can a file be found?

• How are files protected?
• What is file consistency?

» Handling multiple users for a single file
» Spreading updates around

© 1999 by Ethan L. Miller 10-2

What Is a File?

• A file is a group of bits that share some logical relationship to
one another

» Relationship defined by user or OS
» People can disagree on what goes into a single file

• A file usually has a contiguous logical address space
• Files can contain

» Data
– Numbers (binary, character, other)
– Text (documents, program source, e-mail, etc.)
– Structured information (database)

» Program (executable code, script)
» Some of each...

© 1999 by Ethan L. Miller 10-3

Internal File Structure

• Files may have internal structure, decided on by
» Operating system
» User program

• Structure can include
» Flat file / no structure (simple string of bits or bytes)
» Records

– Fixed length (e.g., n bytes per record)
– Variable length (e.g., one line of text per record)

» Complex structure
– Formatted word processing or spreadsheet document
– Executable file with relocation info, symbol table, etc.

• Simulate complex structure by using flat file with special data
structures in file

© 1999 by Ethan L. Miller 10-4

File Attributes

• OS maintains information for each individual file
• Information maintained includes

» Name: human-readable pointer to the file
» Type: needed for systems with different file types (Mac, etc.)
» Location: pointers to file data on disk
» Size: number of bytes in the file
» Protection: information about who can use the file
» Owner: information about the file’s owner (for accounting)
» Timestamps: time of creation, last modification, last usage

(perhaps others…) for accounting & security

• Information stored in the directory structure
» Structure maintained on disk
» Structure updated whenever information changes

© 1999 by Ethan L. Miller 10-5

Operations on Files

• General file operations
» Create: make a new file
» Delete: delete an existing file
» Open: find the appropriate directory entry on disk, and copy the

entry to memory
» Close: write the directory entry for the file to disk, updating it
» Stat: get information about a particular file
» Other functions to query & update file information

• Access
» Read: read data from a file
» Write: write data to file
» Truncate: remove all data from the file

© 1999 by Ethan L. Miller 10-6

File Types

• File types are used to identify the kind of data in a file
• Types can be indicated by

» File name / required: MS-DOS
» File name / optional: Unix
» Type & creator info: Mac

• Some systems require type information (MS-DOS, Mac)
» Type included in name (.exe means executable on MS-DOS)
» Type included in file information, but not in name: Mac has

creator & type information that shows up as different icons

• Other systems have optional type information (Unix)
» Text files on Unix need not end in .text or .txt
» Program suffixes done by convention
» C compilers will often accept files not ending in .c

© 1999 by Ethan L. Miller 10-7

Accessing Files

• Sequential access
» File data accessed linearly: from start to finish
» OS keeps track of current position in file
» Next read or write starts at current position
» Current position updated to end of previous operation
» Current position may be reset to start of file

• Direct (random) access
» Repositioning can be done to any point in file
» Position supplied either

– With read or write request
– As a separate call to OS (lseek)

» Often, OS supports both sequential & random access

• Generally, sequential access is more common and faster

© 1999 by Ethan L. Miller 10-8

Directory Structures

• The directory is a structure on
disk that contains information
about all the files on the disk

» Structure may be complex

» Information about a single file
may be saved in several
locations

– Human-readable name in
one place

– Other information (size,
etc.) elsewhere

• Directory & files reside on disk
• Backups are kept on tape

File1

File3
File2

D1
D2

D3

© 1999 by Ethan L. Miller 10-9

Information Stored in a Directory

• Directory stores information about files
» Information is also called metadata
» Includes information about files discussed earlier

• In Unix, information is split into two pieces
» File name stored in “directory”
» Other information stored in inode

– File type
– Data location
– Current & maximum length
– Date last accessed (for archival purposes)
– Date last updated (for backup purposes)
– File owner (accounting & quota)
– Protection bits

© 1999 by Ethan L. Miller 10-10

Directory Operations

• Locate a file
» Specified by name
» Other parameters (size, etc.)

• Create a file: make an entry in the directory

• Delete a file: remove the directory entry

• List a directory
• Rename a file

• Traverse all (or a subset) of the file system

© 1999 by Ethan L. Miller 10-11

Directory Organization

• Efficiency
» Allow fast file location & directory entry updating
» Consume as little space as possible

• User convenience
» Naming allows multiple names for a single file
» Naming allows multiple files to have the same name, albeit for

different users

• File grouping
» Allow files to be grouped together by common properties
» Groups determined by users (directories in Unix)
» Groups determined by system (all files modified since

yesterday)

© 1999 by Ethan L. Miller 10-12

Single-Level (Flat) Directory

• Single directory for all users
• Problems

» File names are global: users can’t reuse the same name

» Grouping: no way of associating related files

foo bar grades dir .login binDirectory

Files

© 1999 by Ethan L. Miller 10-13

One Directory Per User

• Separate directory for each user
» Single directory for any user
» Naming problem resolved: different users can reuse a name

» Still no way of grouping files

• Introduces the concept of “path name”

foo bar grades foo .login .login
User
directories

Files

elm aaron zzhangTop-level directory

© 1999 by Ethan L. Miller 10-14

Tree-Structured Directory

• Expand two-level structure
to “infinite” levels: tree
structure

» Grouping by sub-directory

» Name must only be unique
within sub-directory

• Directories can contain both
directories and files

• Current directory: default
directory for file accesses

• Path name: list of directories
along path to file

cat

grades

elm

.login

ftpd

users

/

bin

aaron sys

httpd

.login

© 1999 by Ethan L. Miller 10-15

More on Tree-Structured Directories

• Path names may be specified as
» Relative: start in current directory
» Absolute: start at root (top of tree)

• Files can be created anywhere in the tree if path is fully
specified

• Non-empty directories can’t be deleted directly
» First, delete all the files
» Next, delete the directory itself
» Follow this procedure recursively to delete an entire sub-tree

• Problem: files can still have only a single name: attached at a
single place in the tree structure

© 1999 by Ethan L. Miller 10-16

Acyclic Graph Directories

• Want more than one name per file (or sub-directory!)
• Solution: allow multiple pointers to each file or sub-directory
• Cycles prevented: links must point lower in the tree

bin

grades

elm

.login ftpd

users sys

aaron daemons

httpdedbarfoo

cmds

localstd

gcc latexvi

© 1999 by Ethan L. Miller 10-17

Issues with Acyclic Graph Directories

• Aliasing: files and directories can have multiple different
names

» Pointers to a file or directory at several places in graph
» Keep track of number of pointers to a given object

• Removing a link: file system must decide whether to remove
object pointed to by link

» Keep an array (or list) of all pointers to a given object
– Easy to figure out who points to the object
– May lead to inefficiency: variable-sized allocations

» Keep count of links to this object
– Single integer -> delete object when count reaches 0
– Must keep count consistent: increment count and allocate

link atomically

© 1999 by Ethan L. Miller 10-18

General Graph Directories

• Links can go from anywhere to anywhere
• Cycles are possible and must be dealt with

bin

grades

elm

ftpd

users sys

aaron daemons

httpdedbarfoo

sys

localstd

gcc latexu

© 1999 by Ethan L. Miller 10-19

Dealing With Cycles in Directories

• Problem: cycles make several things difficult
» Lookups can go into infinite loops
» Unlinking can have difficulty telling whether an object is actually

unreferenced

• Solutions:
» Allow links to files but not to subdirectories

– Eliminates cycles
– Reduces flexibility

» Use standard garbage collection algorithms to delete
unreferenced objects

» Try to detect cycles when a link is added - slow
» Use “soft links”: link is just a name, not a pointer

– No need to garbage collect objects
– May result in “dangling” links...

© 1999 by Ethan L. Miller 10-20

Protection in File Systems

• File owner (initially, its creator) should be able to control
» What can be done to a file
» Who can do things to a file

• Access types for files are
» Read
» Write
» Execute (files only)
» Append (files only)
» Delete

• Directories also allow
» List
» Create

• May need “meta-permissions”: ability to grant permissions to
others

© 1999 by Ethan L. Miller 10-21

Protection in Unix

• Directories are stored as files, so only one protection
mechanism

• Each file has a user (owner) and group associated with it
» User ID and group ID stored in inode
» Text translation of UID & GID looked up in system files

• Each file has three sets of protection bits associated with it
» One set of rights for each of user, group, and “others”
» Possible rights are:

– Read
– Write
– Execute (lookup for directories)

» Only owner (or root) can change the permissions
» Owner (or root) can change owner or group

© 1999 by Ethan L. Miller 10-22

Protection in AFS

• AFS has more flexible model than Unix
» Unix requires predefined groups (created by system admin)
» Unix allows only one group per file

• AFS uses access control lists (ACLs)
» List can be as long as desired
» List may include individual users and/or predefined groups
» Lists only attached to directories, and apply to files within the

directory

• Permissions given for
» Read, write, insert (create), delete, lookup / list
» Lock (k): lock files within the directory
» Administer (a) directory permissions

© 1999 by Ethan L. Miller 10-23

File Consistency

• Multiple users may access a file at the same time
» If only reads, no problem: file doesn’t change
» If at least one writer, problems crop up

• Problems with writers
» One writer, many readers

– Readers see changes “eventually”
– Issue: how long is eventually?
– Either get old or new data
– After file is closed, changes “stick”

» Many writers (possibly with readers)
– Writers could make conflicting changes
– Order of changes is very important, but could be difficult to

synchronize (remember synchronization?)
– This situation is very uncommon

© 1999 by Ethan L. Miller 10-24

Examples of File Consistency

• Unix semantics
» Writes to an open file are immediately visible to others who have

the file currently open
» Option: single pointer advanced by all processes that have the

file open (single file image)

• Session semantics
» Writes to a file are not seen by other processes that currently

have the file open
» Writes to a file are sent to the file when it is closed, and are

visible to any processes that open the file after that point

