Memory Management

® Linking & loading programs: assigning memory addresses
® Logical vs. physical address spaces
® Process swapping

® Allocation mechanisms
» Contiguous allocation
» Paging
® Segmentation
® Combining segmentation and paging
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Basic Steps in Running a Program

® Before being run, a program must be
» Brought into memory
» Placed within a process

® For batch systems, there’s a list of programs to be run
» Input queue: collection of programs waiting to be run
» System picks the next program to execute

® For interactive systems, users specify processes to run
» System runs whichever program is specified

© 1999 by Ethan L. Miller
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OS Responsibilities for Memory

® Assigning memory locations to instructions & data

» Programs can be loaded anywhere
» Individual instructions & data locations must be associated
with specific memory locations
» Actual instructions may change depending on where the
program and data are loaded
® Finding physical memory into which to place the program
» FInd memory space not currently in use for other things

» Manage memory and allocate it appropriately to processes
and other memory users (I/O devices, OS)

® Protect processes from one another
» Don’t allow one process to read or write memory that isn't its

own
» Allow sharing for efficiency or usability
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Binding Instructions & Datato Memory

® OS must assign addresses to all instructions and data in a

program
® Compile time

» Set starting location (and all others) when program compiled

» Recompile to change location in memory
® Load time

» Compiler generates offsets from the start of the program

» Loader sets all memory locations when program is loaded

» Program may not be relocated once it’s been loaded
® Execution time

» Compiler generates offsets from the start of the program

» Hardware provides registers to point to start of program

» Program may be moved during execution by changing regs
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Linking & Loading

Goals

» Provide locations for all instructions & data

» Propagate this information to all other instructions & data
Step 1: compute offset from start of program

» Store computed values in symbol table

» Keep symbolic names in program
Step 2: substitute actual values using actual locations

» Use symbol table to look up symbol values

» For relocatable code, use offsets from either O or a “base
register set by the operating system

Step 3: OS loads program into memory and sets base
register (if used)
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Dynamic Loading

® Keep as little in memory as possible
» Don’t load a routine until it's actually called
» May even reclaim space from routine after using it
® Useful when program has lots of code that's used
iInfrequently
» Error handling code
» Code for many different unusual cases
® No special OS help required
» Call to a routine first loads it into memory, then calls it
» Routine could “unload” itself upon finishing
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Dynamic Linking

® Postpone linking (final resolution of addresses) until
execution time

® Stub (small piece of code) used to locate a piece of OS
code
» Ensures that the desired procedure is in memory
» Replaces call to stub with call to actual procedure
» EXecutes the procedure

® OS needed
» Trap calls to stub
» Load code into memory if needed

» Make sure process can read the code: code must be in
process’ address space
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Overlays

® Divide program into several sections, including a “master”
section

® Keep in memory only those sections (instructions & data)
needed at a particular time
» Allows process to use less memory
» Implemented by programmer (not OS)
» Needs no special OS support

® May be useful for programs with several phases

» Compiler requires two passes: only need space for pass one
or pass two (not both at once)

» Microsoft Word: code for table editor, graphical editor, and
printer not all required at once

© 1999 by Ethan L. Miller 8-8



Logical & Physical Address Spaces

® Two different views of memory:
» Program view: logical address space
» Hardware view: physical address space

® Logical address (also called virtual address)
» Used by the process: process never sees physical addresses
» (Generated by the CPU

® Physical address
» Memory management unit translates virtual to physical
» Memory hardware (chips) sees physical addresses

® Logical vs. physical addresses
» Same in compile-time and load-time binding schemes
» Different in execution-time address binding schemes
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Memory Management Unit (MMU)

® Piece of hardware that maps virtual addresses to physical
addresses

» May use several different methods to do this

» Relocation register: value in hardware register added to each
address generated by a user process before it's sent to
physical memory

» Page tables: more on them in a bit...
® User program only uses logical addresses
» Program can’t tell where in physical memory it's loaded

» Program may be relocated in physical memory as long as
MMU keeps logical addresses the same
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Process Swapping

® Inactive processes consume memory, if not CPU time

® A process can be temporarily moved to a backing store,
and brought back when it’s ready to run again
® Backing store (usually a disk)
» Sufficient space to store copies of all user processes
» Direct (random) access to all of the images

® Swapping takes time
» Time to seek to correct location (relatively small)

» Time to transfer process to or from disk (relatively large): 10
MB process @ 5 MB/sec = 2 seconds!

® Swapping (or something very similar) is found everywhere
» UNIX / Linux
» Microsoft Windows & Macintosh OS
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Schematic View of Swapping

Swap
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process Process
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user
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process
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main memory disk (backing store)
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Contiguous Memory Allocation

® Divide main memory into two partitions

» Operating system (always resident), often in “low” memory
(lower addresses)

» User processes in “high” memory
» Hardware protects operating system?

® Single-partition allocation

» Relocation register scheme protects other processes and and
the operating system from the current process

» Relocation registers:

— Base: smallest physical address in the process (mapped
to a O logical address)

— Limit (bounds): maximum logical address for the process

— Accesses greater than the limit are disallowed (cause an
exception to be handled by the OS)
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® Blocks of available memory (called holes) are scattered
throughout user memory

Multiple-Partition Allocation

® Processes are allocated memory from a sufficiently large hole

® Operating system keeps track of
» Allocated partitions (and which process owns them)
» Free partitions (holes)

OS

P4

p7

S

OS

p7

OS

OS

P2

P8
oy oy
P2
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Picking a Free Block of Memory

® Given a list of holes, which Request =4 MB

hole do we allocate? 6 MB | 2MB

® First-fit: allocate the first hole
In the list that’s large enough

First
oo
=Z
o
oo
=Z
o

® Best-fit SMB SMB
» Allocate the smallest hole
that’s big enough 6 MB 6 MB
» Leaves a small leftover hole
® Worst-fit g SMPB :’ _SMB_
» Allocate the largest hole 5MB | 1mMB
. Leaves a large leftover hole - —
® First-fit & best-fit are better in 6 MB
» Speed 12
» Memory utilization g 8MB
SMB
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Problem: Fragmentation

® Fragmentation: there’s enough memory available in the
system, but it can’'t be used to satisfy the request

® External fragmentation: there’s enough free space, but it's
not contiguous

® Internal fragmentation
» Process isn’t using all of the memory In its partition
» Unused memory is within a partition, not outside it

® Compaction can reduce external fragmentation

» Memory contents are shuffled to combine all free memory
Into one large block

» Compaction requires that relocation is dynamic and done at
execution time (probably needs hardware help)

» Processes can't have outstanding I/O requests to user
memory when they’re moved, so do I/O only into OS buffers

© 1999 by Ethan L. Miller 8-16



Solution: Paging

® Paging allows the logical Frame 0
address space of a process number

® Process is allocated more

to be non-contiguous ﬁl Page 2
physical memory when

needed

® Physical memory divided into Page O

fixed-size blocks - frames Page 3

. N Page 1
® Logical memory divided into

O/ O\~ W

fixed-size blocks - pages Page 2
Page O

® Keep track of free frames Page 3
® Allocate as many frames as 7% Pagel

a process has pages | onical ———
® Use page table to map g ySIC

logical to physical addresses memory memory
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Breaking Up aLogical Address

® Split address from CPU into
two pieces

» Page number (p)
» Page offset (d)
® Page number
» Index into page table

» Page table contains base
address of page in physical
memory

® Page offset

» Added to base address to
get actual physical memory
address

® Page size = 29 bytes

© 1999 by Ethan L. Miller

Example:
» 4 KB (=4096 byte) pages
» 32 bit logical addresses

24 = 4096 —=pd =12

'

32-12 =20 bits 12 bits

A
~ - ~ N

P d

— _/
~

32 bit logical address
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Address Trandation Architecture

frame number
page number frame number ,
; page offset :
0
A » < v
CPU— p | d f d 1
A
0 f-1
1 . f
: f+1
p-1 f+2
S— f
p+l physical memory
page table
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Memory & Paging Structures

Page O
Page 1
Page 2
Page 3
Page 4
Page 5

L ogical memory (PO)

Page O
Page 1

Logical memory (P1)
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Page table (PO)
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Page table (P1)

Frame
number

Page 1 (PO)

Page 1 (P1)

'

Page 4 (PO)

Page 2 (PO)

Page 5 (PO)

Page 3 (PO)

Page O (P1)
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lmplementing Page Tables in Hardware

® Page table resides in main (physical) memory

® CPU uses special registers for paging
» Page table base register (PTBR) points to the page table

» Page table length register (PTLR) contains length of page
table: restricts maximum legal logical address

® Translating an address requires two memory accesses
» First access reads page table entry (PTE)
» Second access reads the data / instruction from memory

® Reduce number of memory accesses
» Can’t avoid second access (we need the value from memory)

» Eliminate first access by keeping a hardware cache (called a
translation lookaside buffer or TLB) of recently used page
table entries
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Trandation Lookaside Buffer (TLB)

® Search the TLB for the
desired logical page number
» Search entries in parallel
» Use standard cache
techniques
® |f desired logical page
number is found, get frame
number from TLB
® |f desired logical page
number isn’t found

» Get frame number from
page table in memory

» Replace an entry in the TLB
with the logical & physical
page numbers from this
reference

© 1999 by Ethan L. Miller

Logical Physical
page# frame#

8 3
unused

2 1

3 0
12 12
29 6
22 11

7 4
Example TLB
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Handling TLB Misses

® If PTE isn’t found in TLB, OS needs to do the lookup in the
page table

® Lookup can be done in hardware or software

® Hardware TLB replacement
» CPU hardware does page table lookup
» Can be faster than software
» Less flexible than software, and more complex hardware

® Software TLB replacement
» OS gets TLB exception

» EXxception handler does page table lookup & places the result
into the TLB

» Program continues after return from exception
» Larger TLB (lower miss rate) can make this feasible
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How Long Do Memory Accesses Take?

® Assume the following times:
» TLB lookup time = a (often zero - overlapped in CPU)
» Memory access time = m
® Hit ratio (h) is percentage of time that a logical page
number is found in the TLB
» Larger TLB usually means higher h
» TLB structure can affect h as well
® Effective access time (an average) is calculated as:
» EAT =(m+ a)h+ (m+ m + a)(1-h)
» EAT =a+ (2-h)m
® Interpretation
» Reference always requires TLB lookup, 1 memory access
» TLB misses also require an additional memory reference
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Protecting Memory

® Associate protection bits with each page table entry
» Store bits along with physical frame number
® Valid bit

» “valid” => page is in the process’ logical address space, so
access to it is OK

» “Invalid” => page isn’t currently accessible
— Page not in process’ address space?
— Page not in memory?
® Writeable bit
» “writeable” => writes to this page are OK
» “non-writeable” => this page is read-only
® Executable bit: if set, instructions may come from this page
® Access must pass all checks to be allowed
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Two-Level Page Tables

® Problem: page tables can be
too large

» 232 bytes in 4KB pages
need 1 million PTEs

® Solution: use multi-level page
tables

» “Page size” in first page
table is large (megabytes)

» PTE marked invalid in first
page table needs no 2nd
level page table

® 1stlevel page table has
pointers to 2nd level page
tables

® 2nd level page table has

actual frame numbers in it
© 1999 by Ethan L. Miller

/

\

1st Ievel\

page table

2nd level
page tables

237

500

412

125

613

\ T~/

961

884

960

\

955

main
memory
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More on Two-Level Page Tables

Tradeoffs between 1st and 2nd level page table sizes

» Total number of bits indexing 1st and 2nd level table is
constant for a given page size and logical address length

» Tradeoff between number of bits indexing 1st and number
Indexing 2nd level tables

— More bits in 1st level: fine granularity at 2nd level
— Fewer bits in 1st level: maybe less wasted space?

All addresses in table are physical addresses
Protection bits kept in 2nd level table

Only PTEs from 2nd level table (actual logical -> physical
translations) are cached in TLB
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Two-Level Paging: Example

® System characteristics

» 8 KB pages

» 32-bit logical address divided into 13 bit page offset, 19 bit

page number

® Page number divided into:
» 10 bit page number

» 9 bit page offset

® Logical address looks like this:

page number page offset
p, =10hbits | p, =9 bits offset = 13 bits

» P, IS an index into the 1st level page table

» P, IS an index into the 2nd level page table pointed to by p,

© 1999 by Ethan L. Miller
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2-Level Address Trandlation Example

frame
number

page number page offset
p, = 10 bits | p, =9 hits offset = 13 hits
physical addressl
0 19 13
A
1 >
0
1
»> Py
> D,

1st level page table
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2nd level page table

maln memory
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Multilevel Paging Performance Issues

® Each level requires another table lookup
» 2-level paging requires 3 accesses for each reference
» N-level paging requires n+1 accesses per reference
® Using a TLB can make this much faster
» TLB miss rate of 0.5% (actually a bit high for a modern CPU)
» Memory access time of 100 ns
» NoO penalty for using TLB
» Access time = 0.995 * 100 + 0.005* 300 = 101 ns
» Only a 1% slowdown!
® Even handling in software is OK!
» TLB miss requires 2 us (2000 ns)
» Access time = 0.995 * 100 + 0.005* 2000 = 109.5 ns
» Exception handler results in a 10% slowdown
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Inverted Page Table

® Reduce page table size further: keep one entry for each
frame in memory
® PTE contains
» Virtual address pointing to this frame
» Information about the process that owns this page
® Search page table by
» Hashing the virtual page number and process ID
» Starting at the entry corresponding to the hash result
» Search until either the entry is found or a limit is reached

® Frame number in physical memory is the index of the PTE
In which the correct virtual page number is found

® Improve performance by using more advanced hashing
algorithm
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Inverted Page Table Architecture

frame
number

0
1

13

page number page offset
process |D p = 19 bits offset = 13 bits
v v
pid P physical addr
search 12
0| pid, Po
1| pid, P1
K| pid, Py K —
Inverted page table
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Sharing Pages of Physical Memory

® Processes often want to share information with other
processes

» Shared code used in several processes: saves space by
loading only a single copy of the code for multiple processes

» Shared data between processes
® Shared pages should appear at same virtual address in
each process
» Not a requirement, but makes life easier
» Pointers can be shared between processes
® Processes can also have private code & data
» Some PTEs point to shared pages (code & perhaps data)
» Other PTEs point to private pages (code & data)
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Sharing Physical Pages. Example

CodeA.O

Lib.0

Lib.1

Data0.0

N wWw N B O

Datal.1

Process 0O

CodeB.0

Lib.0

Lib.1

Datal.O

A W NP O

Datal.1

Process 1
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3
10
0
1
11

Page table
for Process 0

Z
10
0
5
6
Page table

for Process 1

A W NP O

CodeB.0

Lib.0

Lib.1

Data?.0

Data?.1

Process2 Pagetable

for Process 2

© 0O N o o0k W NN+ O

— 2
= O

Lib.1
Data0.0

CodeA.O
Datal.l
CodeB.0
Data?.1
Data2.0
Lib.0
Data0.1

main memory
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Problems with Sharing Physical Pages

® Sharing pages is good!

» Requires less physical memory, particularly for code

» Makes programs load faster (use code already in memory)
® Problems with sharing pages

» Pages usually have the same address in all processes: leads
to difficulties allocating address space

» Changes in a single piece of shared code may require a lot of
recompilation

® Solution: use segmentation
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Segmentation

® Divide address space into segments rather than pages
» A segment is a logical unit from the user’s point of view

»

»

Segments can be any size (large or small)

Segments can be placed at any location in a process’s
address space (more on that in a bit)

® Processes are composed of one or more segments
® Segments can be

»

»

»

»

»

“Private” code to implement process-specific functions such
as mai n in your code

Libraries that have procedures shared by many processes
Local variables (or groups of them)

Global variables shared by many processes

Stack
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How Segments Fit Into Memory

MeEMory | oackl

codeO

varsl

libm

stackO

vars)

® Note that segments in a process’s address space are not

ordered with respect to one another codel
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|mplementing Segments

® Logical addresses consist of segment number and offset:
<segment number (s), offset (x)>
® Segment table maps logical address into physical address
» Base: starting physical address for each segment
» Limit: size of the segment

® CPU keeps track of segment table location

» Segment table base register (STBR) points to the start of the
segment table in physical memory

» Segment table length register (STLR) indicates how many
segments there are

® Translation is done by:
» Check that segment number is less than STLR
» Look up base of segment using STBR+s
» Add X to base to get physical address
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Advantages of Segments

® Relocation is easy
» Suspend all processes using the segment
» Copy segment to anywhere in memory
» FIx up the segment table to point to the new segment base
» Resume processes using the segment
® Sharing is easy
» All processes use the same segment number for any given
segment
» Processes can use the segment simply by referring to it
® Allocation may be difficult
» Variable-sized objects can lead to external fragmentation
» Use first-fit or best-fit to allocate memory
» Relocate segments to consolidate memory “holes”
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Protecting Segments

® Basic protection bits: each entry in the segment table has
» Valid bit: 1 = segment is valid

» Read/write/execute bits: indicate whether operation is
permissible

® Protection is done on a segment-by-segment basis
» Code sharing occurs at the level of segments

» Memory with different sharing or permitted operations is split
Into multiple segments with the same permission bits

® More detailed protection is possible by using a separate
segment table for each process

» Only include segments the process is allowed to access
» Make sure updates cover all of the affected segment tables
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Segmentation Example

base | limit 38004
72116 | 4404 libc
38004 | 17016
55020 data 2
86336 | 5720 58888
segment table
Process 1 79116
code 1
76520
— code 2
base | limit 82012
76520 | 5492
38004 | 17016 86336 data 1
55020 | 3868 92056
segment table
Process 2 physical memory

Process 2
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Segmentation with Paging

® Segments have advantages
» Sharing is easier
» Relocatable code is very easy to make
® Paging has advantages
» Objects in memory are fixed size, making allocation easier
» Fragmentation is greatly reduced
® Use both segmentation and paging to get both advantages
® Two possible solutions

» Segment table entry contains pointer to a page table rather
than actual segment (MULTICS)

» Segment table translates from segmented address to virtual
address, which is then translated using page tables (x86)
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Segmentation & Paging in the x86

segment #

offset

L segment descriptor

descriptor table

linear address

- directory page

offset

page directory base

L v
directory entry

>

v

page directory

% page table entry
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physical address

page frame
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Comparing Memory Management Schemes

® Hardware support. some schemes need special hardware
that may not be available on a particular platform

® Performance: the more complex the scheme, the slower it
usually runs

® Fragmentation: how much memory is wasetd?

® Relocation: how easy is it to move information around Iin
memory, perhaps to reduce fragmentation?

® Sharing: can memory be shared between processes,
reducing total memory usage?

® Protection: how are individual pages protected, particularly
If sharing is possible?

® Swapping: how easy is it to move processes in and out of
memory?
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