
© 1999 by Ethan L. Miller 7-1

Deadlocks

• What are deadlocks?
• System model
• Characterizing deadlocks
• Methods for dealing with deadlocks

» Deadlock prevention

» Deadlock avoidance
» Deadlock detection

• Recovering from deadlock
• Deadlock handling in the “real world”

© 1999 by Ethan L. Miller 7-2

What’s a Deadlock?

• Deadlock occurs when each of a set of processes holds
a resource and is blocked waiting to acquire a resource
held by another process in the set

• Example 1:
» A system has a disk drive and a tape drive

» P0 wants to read from tape to disk, so it holds the tape drive and
waits for the disk to be available

» P1 wants to read from disk to tape, so it holds the disk and waits
for the tape drive to be available

• Example 2 (semaphores A & B initialized to 1)

P0
A.Wait();
B.Wait();

P1
B.Wait();
A.Wait();

© 1999 by Ethan L. Miller 7-3

Deadlock on a One-Lane Bridge

• One lane on bridge
• Each bridge section can be

viewed as a resource
» One section per car

• Deadlock resolution: back
up cars

» Preemption
» Rollback

» May need to back up more
than one car

• Starvation
» Some cars never get to cross

© 1999 by Ethan L. Miller 7-4

Resources in a System

• System has classes of resources R0, R1, R2, …, Rn

» CPU cycles
» Pages of memory

» I/O devices (printer, tape, disk)

• Each class Ri has Wi instances
» Example: class “disk” has 4 instances (4 disks)

» Example: class “memory page” has 512 instances (512 pages)
» Instances are fully interchangeable (a process can use any free

instance in a resource class)

• Processes can use resources by:
» Requesting the resource

» Using the resource
» Releasing the resource

© 1999 by Ethan L. Miller 7-5

Conditions Necessary for Deadlock

• Mutual exclusion
» Only one process at a time can use a resource

• Hold & wait
» A process holding at least one resource is waiting to acquire

additional resources held by other processes

• No preemption
» A resource can only be released voluntarily by the process

holding it after that process has completed its task

• Circular wait
» There exists a set {P0, P1, …, Pn} of waiting processes such that

P0 is waiting for a resource held by P1

P1 is waiting for a resource held by P2, and so on up to
Pn which is waiting for a resource held by P0

© 1999 by Ethan L. Miller 7-6

Example: Dining Philosophers

• Each philosopher picks up the chopstick on his/her right
• Each philosopher waits for the chopstick on his/her left

to become available
• Deadlock occurs

» Mutual exclusion: a chopstick can only be held by one person

» Hold & wait: a person holds a chopstick while waiting for another
» No preemption: philosophers don’t put a chopstick down if they

can’t get both

» Circular wait: P0 waits for P1, which waits for P2, …, which
waits for P6, which waits for P0

© 1999 by Ethan L. Miller 7-7

Resource Allocation Graph

• Use a graph to represent resource usage by processes
» Graph consists of a set V of vertices & a set E of edges
» Edges connect vertices

• Vertices consist of two types
» P = {P0, P1,…, Pn}: one vertex for each process

» R = {R0, R1,…, Rm}: one vertex for each class of resources

• Edges are one of two types
» Request edge: directed edge from Pi to Rj

» Assignment edge: directed edge from Rj to Pi

© 1999 by Ethan L. Miller 7-8

Vertices in a Resource Allocation Graph

Process

Pi requests instance of Rj

Resource with 4 instances

Pi holds an instance of Rj

Pi

Rj

Pi

Rj

Pi

Rj

© 1999 by Ethan L. Miller 7-9

Resource Graph Without Cycles

P0

R0

P1 P2 P3

R1 R2 R3 R4

© 1999 by Ethan L. Miller 7-10

Resource Graph With a Cycle

P0

R0

P1 P2 P3

R1 R2 R3 R4

© 1999 by Ethan L. Miller 7-11

Resource Graph Cycles and Deadlock

• If the resource graph contains no cycles => no deadlock
• If the graph contains a cycle

» If each resource class has exactly one instance => deadlock

» If some (or all) resource classes have more than one instance
=> deadlock possible (but not certain)

• Detecting deadlock: can processes run and release their
resources to eliminate the cycle in the graph?

» If yes, there’s no deadlock

» If no, there’s deadlock

• Possibility: no deadlock yet, but deadlock may happen
shortly

© 1999 by Ethan L. Miller 7-12

Dealing With Deadlocks

• Ensure the system will never enter a deadlock state
• Allow system to enter deadlock state and then recover

» Kill off processes causing the deadlock

» Preempt processes, taking their resources away

• Ignore deadlock problem (maybe it’ll go away…)
» Pretend that deadlocks never happen
» Used by most operating systems because

– Deadlocks are rare : resources are plentiful

– Detecting / preventing them is time-consuming

© 1999 by Ethan L. Miller 7-13

Preventing Deadlock

• Ensure that at least one of the 4 conditions for deadlock
can never occur

• Mutual exclusion
» Use sharable resources

» Not practical for resources that can’t be shared

• Hold and wait: guarantee that processes waiting for
resources don’t hold any while they wait

» Require a process to acquire all of its resources at once

– When process starts

– At any time when it doesn’t hold any resources

» May lead to starvation and/or low resource utilization
– All-or-nothing approach tends to lead to “nothing”

– Many processes held up by a few processes using “popular”
resources

© 1999 by Ethan L. Miller 7-14

Preventing Deadlock (continued)

• No preemption: allow preemption to eliminate deadlock
» Release all of a process’ resources if it fails to acquire a

resource that it requests
» Add released resources to the list of “needed resources” for that

process

» Restart process only when it can gain all of the resources it
needs, including those preempted

» Problem: process may be in the middle of using some of the
resources

• Circular wait: eliminate cycle in the resource graph
» Impose an order on all resource classes
» Require that processes request resources in fixed order (same

order for all processes)

© 1999 by Ethan L. Miller 7-15

Dining Philosophers & Circular Wait

• For simple solution to deadlock in Dining Philosophers,
order all resources (chopsticks)

» Label chopsticks 0 through n-1

» Require that philosopher grab his/her lower-numbered chopstick
first

• Avoids circular wait by eliminating cycle in resource
graph

» Cycle requires both
– Philosopher waiting for chopstick a, holding b (a > b)

– Philosopher waiting for chopstick c, holding d (d > c)

» Otherwise, no cycle is possible

» Request lower number first => no deadlock

© 1999 by Ethan L. Miller 7-16

Avoiding Deadlock

• Requires that the system have some additional
information about each process

» Simple model: process declares maximum number of each class
of resources that it may need

» Requests for more resources than the maximum are
automatically denied

• Deadlock avoidance algorithm examines the resource
allocation state to ensure that there’s never a circular
wait

» Done before granting each request

» Not done when process declares maximum resources requested

• Resource allocation state includes:
» Available & allocated resource amounts
» Maximum demands of each process

© 1999 by Ethan L. Miller 7-17

Safe State

• Granting a resource request must leave the system in a
safe state

» Safe state is one in which there exists at least one safe
sequence of processes

» Safe sequence is an order that allows all processes to finish

• Sequence <P0, P1, …, Pn> is safe if, for each Pi, the
resources that Pi can still request may be satisfied by
currently available resources + resources held by
previously completed processes (Pj , j < i)

» Pi can wait until all previous processes have finished if current
resources aren’t sufficient

» Pi gets its resources, executes, frees all resources, and exits

» Pi+1 can run after Pi terminates, freeing all its resources

© 1999 by Ethan L. Miller 7-18

Safe State & Deadlock

• System is in a safe state:
» Deadlock cannot occur
» Future resource requests could cause the system to move into

an unsafe state

• System is in an unsafe state:
» Deadlock is possible

» Deadlock isn’t necessarily certain

– Processes might not request all of the resources they’ve
“reserved”

– Processes might release some of the resources they already
hold before requesting more

• Deadlock avoidance: ensure that the system will never
enter an unsafe state

© 1999 by Ethan L. Miller 7-19

Banker’s Algorithm

• Allows multiple instances of any resource class
• Each process must state its maximum resource usage

before starting
• A process requesting a resource may have to wait
• A process that acquires resources must release them in

a finite amount of time (no infinite loops)
• Called the Banker’s Algorithm because it can be used by

a bank to make sure that the bank never runs out of
cash (presumably a limited resource)

© 1999 by Ethan L. Miller 7-20

Data Structures for the Banker’s Algorithm

• Basic definitions
» n = number of processes
» m = number of resource classes

• Data structures
» int available[m];

if available[j] == k, there are k instances of resource Rj available
» int max[n][m];

If max[i][j]==k, then process Pi may request at most k instances
of resource Rj

» int allocation[n][m];
If allocation[i][j]==k, then process Pi currently has k instances of
resource Rj

» Int need[n][m];
If need[i][j]==k, then process Pi may need k more instances of Rj

• Invariant: need[i][j] == max[i][j]-allocation[i][j]

© 1999 by Ethan L. Miller 7-21

Safety Algorithm

• Define work[m] and finish[n]
• Initialize work[] = AVAIL and finish[] = FALSE
• Repeat while, for some i, finish[i]==FALSE

» Find an i such that both:
– finish[i] == FALSE

– need[i][j] <= work[j] for all j

» If no such i exists, exit the repeat loop
» finish[i] = TRUE

» For all j:
– work[j] += allocation[i][j]

• If finish[i]==TRUE for all i, the system is in a safe
state

© 1999 by Ethan L. Miller 7-22

Resource Request from Process Pi

• Requesti is the request vector for process Pi

• If Requesti[j] == k, then process Pi wants k
instances of resource class Rj

• If Requesti > Needi, process wants more than its max
• If Requesti > Available, process must wait for more

resources to become available
• “Allocate” resources to Pi by modifying the state by:

 Available -= Requesti
 Allocationi += Requesti
 Needi -= Requesti

» If this is a safe state, the resources are allocated and the
temporary changes above are made permanent

» If this is not a safe state, Pi must wait and the previous allocation
state is restored

© 1999 by Ethan L. Miller 7-23

 Banker’s Algorithm Example

• System contains:
» 5 processes (P0 through P4)

» 3 resources (A: 8 instances, B: 9 instances, C: 3 instances)

• Need is defined as Max - Allocation

• Safe state: processes run in order P1, P4, P0, P2, P3
» Other orderings are possible

• Initial snapshot:
P Allocation Max Need Available
 A B C A B C A B C A B C
P0 3 0 1 6 4 3 3 4 2 2 3 1
P1 0 1 1 1 3 2 1 2 1
P2 2 1 0 6 5 0 4 4 0
P3 0 4 0 3 9 3 3 5 3
P4 1 0 0 2 2 2 1 2 2

© 1999 by Ethan L. Miller 7-24

Banker’s Algorithm, continued

• Process P4 requests (1,1,0)
» Check to see if resources available

» Check to see if we’re still in a safe state
» Yes: P1, P4, P0, P2, P3

• Consider system before P4 request
» Can P2 request (1,1,0)?

P Allocation Max Need Available
 A B C A B C A B C A B C
P0 3 0 1 6 4 3 3 4 2 1 2 1
P1 0 1 1 1 3 2 1 2 1
P2 2 1 0 6 5 0 4 4 0
P3 0 4 0 3 9 3 3 5 3
P4 2 1 0 2 2 2 0 1 2

© 1999 by Ethan L. Miller 7-25

Detecting Deadlock

• Deadlock prevention can be slow and difficult
• Rather than prevent deadlock, allow it to happen

» Deadlocks are infrequent

» Deadlocks can be “backed out” if they’re detected

• To do this, we need
» Deadlock detection algorithm
» Deadlock recovery mechanisms

© 1999 by Ethan L. Miller 7-26

Single Instances of Each Resource

• Simple case: one instance of each resource
• Solution: keep a “wait-for” graph

» Each process is a node

» Directed edge from Pi to Pj indicates that Pi is waiting for Pj to
release a resource

• Periodically invoke an algorithm that searches for cycles
in the graph

» Don’t need to invoke each time a resource is used

» Invocation frequency depends on how urgently a deadlock must
be dealt with

• Graph algorithm to detect cycles requires O(n2)
operations, where n is the number of vertices
(processes) in the graph

© 1999 by Ethan L. Miller 7-27

Multiple Instances of Resources

• Normal case: several instances of one or more
resources

• Data structures required:
» Available: vector of length m indicating the number of available

resources of each class

» Allocation: an n x m matrix holding the number of resources of
each type currently held by each process

» Request: an n x m matrix indicating the current request of each
process

© 1999 by Ethan L. Miller 7-28

Deadlock Detection Algorithm

• Define
» Work[m] = Available

» Finish[i] = false if any Allocation[i][j] != 0

• Repeat until done
» Find an index i such that both:

– Finish[i] == false

– Request[i] <= Work[i]

– If none is found, the system is deadlocked, and the
processes that haven’t yet finished are the ones causing it

» Process i found in the previous step can finish
– Work += Allocation

– Finish[i] = TRUE

• Algorithm requires O(m x n2) operations to detect
deadlock

© 1999 by Ethan L. Miller 7-29

Deadlock Detection Example

• System contains:
» 5 processes (P0 through P4)

» 3 resources (A: 7 instances, B: 2 instances, C: 6 instances)

• Sequence P0, P2, P3, P1, P4 will allow all processes to finish

P Allocation Request Available
 A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

© 1999 by Ethan L. Miller 7-30

Deadlock Detection Example, continued

• P2 requests another instance of resource C
» P0 can still finish, returning its resources to the pool

» P1, P2, P3, P4 are deadlocked

• How can the system recover from a deadlock?

P Allocation Request Available
 A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 1
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

© 1999 by Ethan L. Miller 7-31

Using Deadlock Detection

• How frequently (and when) to invoke depends on:
» Frequency with which deadlocks occur
» Number of processes that need to be rolled back (forced to give

up their resources and restart from an earlier point)

• If deadlock detection is invoked arbitrarily, it’s hard to
find the “keystone” for the deadlock

» Try to roll back as few processes as possible

» Many cycles in graph might be undone by rolling back just one
or two processes, undoing the “log jam”

© 1999 by Ethan L. Miller 7-32

Recovering from Deadlock: Termination

• Terminate all deadlocked processes
» Drastic, but fast and guaranteed to work

• Abort processes one at a time until the deadlock is gone
» Slower, but less disruptive

• How do we choose processes to kill?
» Process priority (keep more important processes)
» Execution time or time to completion (conserve CPU time)

» Other resources used by the process

» Other resources needed to complete process execution

» Number of processes that must be aborted (the fewer the better,
usually)

» Other factors (interactive/batch, user running the process,
interrelation of processes)

© 1999 by Ethan L. Miller 7-33

Recovery from Deadlock: Preemption

• Rather than kill a process, steal some (or all) of its
resources

» Computation not wasted

» Process may be able to proceed in a limited way

• To select a victim, minimize cost (as with termination)
• Process may need to be “rolled back”

» Free up resources

» Restart execution at point just before resources were requested

• Potential problems with preemption
» Starvation: same process may always be victimized

» Code complexity: allowing roll back isn’t always easy

© 1999 by Ethan L. Miller 7-34

Deadlock Handling

• Combine basic approaches
» Prevention: very conservative, but guaranteed to work
» Avoidance: less restrictive than prevention, but requires a priori

knowledge from processes

» Detection: useful if deadlocks are unlikely because the overhead
of prevention and avoidance is too high

• Use different approaches for different resources
» Printer: prevention

» Memory pages: detection
» Disk space: avoidance

