Operating System Structures

® Parts of an operating system
® Services that an operating system provides
® (Calls to the operating system
® QOperating system programs
® Operating system structure
» Layering
» Levels of abstraction

® Virtual machines
» General VMs
» DLX virtual machine

® System design and implementation

© 1999 by Ethan L. Miller 31



Operating System Components

® Process management

¢® Memory management
» Main memory
» Secondary storage (disk) management

® 1/O system management
® File management

® Protection
» Users from one another
» QOperating system from everyone

® Networking
® Command interpreter (user interface)

© 1999 by Ethan L. Miller 3-2



Managing Processes

® Whatis a process?
» Program in execution
» More generally, a single stream of instructions
® What does a process need?
» CPU time
» Memory, files & disk space
» 1/O devices
® What is the operating system responsible for?
» Creating and deleting processes
» Starting and stopping processes
» Providing mechanisms to allow
— Processes to synchronize with one another
— Processes to communicate with one another

© 1999 by Ethan L. Miller

33



Managing Main Memory

® What is main memory?
» Large array of bytes (or words)

» Volatile storage: loses contents if the system crashes or fails
® What is the OS responsible for?

» Allocating pieces of memory to the processes that want to
use it

» Keeping track of who is using which part of memory
» Deciding which processes to run based on available memory

© 1999 by Ethan L. Miller 34



Disk Management

® What is disk?

»

»

»

»

Larger storage than main memory

Non-volatile: contents survive system failures and crashes
(though disk crashes can lose data...)

Repository for most programs and data (accessed through
file system)

Other types of storage possible, but not common for active
use (flash memory, tape)

® What's the OS responsible for?

»

»

Allocating storage to those who request it
Managing the available free space

» Scheduling the operation of the disk

© 1999 by Ethan L. Miller 35



/O System Management

® What is the I/O (input/output) system?
» QOther devices such as video, tape drives, mouse & keyboard
» Typically not used as active storage

® What's the OS responsibility
» Maintaining buffers for devices to use for transfers

» Providing a standard interface to different kinds of devices via
device drivers

» Providing drivers for many kinds of hardware devices

© 1999 by Ethan L. Miller 3-6



File Management

® What's a file?
» Information grouped together by its creator
» Examples
— Program
— Documents (spreadsheet, paper, etc.)
— Data

® What's the OS responsible for?
» Creating and deleting files
» Allowing users to find files they’ve previously stored
— Creating and deleting directories
— Looking up files
» (Getting file contents to and from memory
» Backing up files for safety reasons

© 1999 by Ethan L. Miller

3-7



Protection

® What is protection?
» Controlling accesses to resources by
— Users
— Processes
» Maintaining integrity of resources
® Whatis OS responsibility?
» Distinguish between allowed and unauthorized usage
— Allow different types to be specified
— Keep track of who'’s allowed to change the rules
» Enforce protection rules
— Prevent unauthorized accesses

— Possibly prevent users from finding out what they can’t
access...

© 1999 by Ethan L. Miller 3-8



Network Management

® What's a network?
» Communication system tying computers together

» Mechanism for allowing multiple computers to act together
(distributed system)

® What's the OS responsibility?
» Decide who'’s allowed to use the network
» Figure out who gets messages, and how to deliver them
» Take CMSC 481 to find out more...

© 1999 by Ethan L. Miller 39



Command Interpreter / User Interface

®* What is it?
» Method for users to ask the computer to do something
» Mechanism for processes (programs) to make requests

® What are the OS responsibilities?

» Interpret control statements that request previously
mentioned functions

— Process & resource management
— Protection
— File system & I/O device access
» Provide an easy-to-use (hopefully) interface to the OS
— Command line interpreter (shell)
— Graphical user interface (GUI)

© 1999 by Ethan L. Miller 3-10



OS-Provided Services

¢ Execute a program
» Load into memory
» Run it
® Perform I/O operations on behalf of users & processes
® File system operations (read/write/create/delete, etc.)
® Communications
» Between processes on the same computer
» Between a process on this computer and one on another
» Uses either shared memory or message passing
® Detect errors

» Report (and perhaps work around) errors in CPU, I/O
devices, and memory

» Contain errors in user processes (and OS!)

© 1999 by Ethan L. Miller 311



Internal OS “ Services’

® Additional services not directly requested by users
» Necessary to allow OS to function properly
» Often largely invisible to users
® Resource allocation
» Divide available resources between processes
» Ensure that resources aren’t overallocated
® Accounting
» Track resource usage by users & processes
— Billing
— Gather usage statistics
® Protection
» Control access to system resources
» Prevent unauthorized resource usage

© 1999 by Ethan L. Miller 312



System Calls

® Provide an interface between a process and the OS
» Implemented as assembly language instructions
» Usually “hidden” in a standard library of code

» Most languages (C, Fortran, Pascal, etc.) allow system calls
to be made directly

® Allow programs to pass information to the OS
» Pass by value
— Put parameters in CPU registers
— Push parameters onto the stack

» Store parameters in memory (table or otherwise), and pass
pointers to the parameters (pass by reference)

» Operating system knows where to find information, and reads
It after the system call gives it control

» |Information is returned on stack or in register

© 1999 by Ethan L. Miller 3-13



OS Programs

® Not part of the operating system kernel (central part of OS)
® Provide services that can be done by user-level processes

» File & directory manipulation (cat , | s)

» Operating system status information (ps, t op)

» Programming language support (gcc, 77, perl)
» Program loading and execution (I d)

» Communications (ssh, pi ng)

» Protection manipulation (chnod, chgrp)

» Interface (X, tcsh)

® Users normally interact with programs, not system calls
» Friendlier interface
» More error checking: protect users from themselves

© 1999 by Ethan L. Miller

3-14



Operating System Structure

® “Jumble” approach
» Little structure
» Smallest code size
® Modular approach
» Code grouped into modules
» All modules run at the same “level” and can access the same
things
® Layered approaches
» Modules either layered or at same level
» Modules can only access the structures they need

© 1999 by Ethan L. Miller 3-15



OS Structure : “Jumble” Approach

® Simple approach
» Most functionality in least space
» Difficult to add more functionality later
» Bugs in one module can crash the whole system

® Example : MS-DOS
» Not divided into modules
» Interfaces and levels of functionality not well-separated
» Difficult to add new functionality
— Changes made all over the system
— Bugs in additions could crash the entire system
» Advantage: small memory footprint

© 1999 by Ethan L. Miller

3-16



OS Structure : Modular Approach

® Still relatively simple
» NoO need for advanced hardware
» Relatively fast (low overhead)

® Example : BSD 4.x UNIX

» Two basic levels of structure
— Systems programs
— Operating system kernel

» Kernel further broken down into modules
— Individual modules perform specific functions
— Device drivers easily added (well-defined interface)

» All modules can access all data structures
— Interaction between modules may be easier to program
— Bugs in one module may affect other modules

© 1999 by Ethan L. Miller 3-17



OS Structure: Layered Approach

® Break operating system into modules
® Allow each module to access only those structures it needs
to perform its job
» Fewer bugs due to unusual interactions: more stability?
» Better overall protection
» May be a bit slower

® Example: Mach (microkernel)

» Each module (memory management, process management,
etc.) can only access its own structures

» Communications between modules via simple interface
» Bug in one module may not crash entire machine

» Flaky device drivers can be dealt with

» Potentially easier to add code to operating system

© 1999 by Ethan L. Miller 3-18



OS Structure: Layered Approach

® (OS divided into layers, each one using functions only of
lower layers
® Example: THE operating system
» Layer 5: user programs
» Layer 4: 1/0 device buffering
» Layer 3: operator/console device driver
» Layer 2: memory management
» Layer 1: CPU scheduling
» Layer O: hardware

© 1999 by Ethan L. Miller 3-19



Virtual Machines

® Provide an interface to the user identical to the underlying
bare hardware

» Each process has access to all hardware features
— Its own CPU & memory
— Its own I/O devices

» Virtual machine interprets requests that might be “dangerous”
and changes them to keep processes separate

» CPU scheduling gives a process the illusion of its own CPU

» Virtual I/O devices created by interleaving accesses from
processes

® Programs can be written that use the raw hardware

® Virtual machine need not be the same as the actual
machine on which it’s running

© 1999 by Ethan L. Miller 3-20



Why Use aVirtual Machine?

® Protect system resources
» Each VM is isolated from all other VMs
» Individual VM can run simple (or no) operating system
» However, no direct sharing of resources?
® Provide a platform for OS (and architecture) research &
development

» Use “raw” hardware to develop new operating systems
without crashing current system

» Simulate architecture changes without actually building them

® Unfortunately, VMs are difficult to implement because they
must provide an exact duplicate of the underlying machine

© 1999 by Ethan L. Miller 321



Goalsfor OS Design

® (Goals for the user experience: OS should be:
» Reliable
» Easy to use
— Graphical interface?
— Simple-to-understand commands
» Fast
» Safe

® Goals for the OS designer: OS should be:
» Well-designed
— Easier to implement & maintain
— Error-free design (reliable, few bugs)
» Flexible: able to add new pieces without a total redesign
» Efficient: use the hardware well without wasting resources

© 1999 by Ethan L. Miller 3-22



Distinguishing Mechanism from Policy

® (OS designers must separate mechanism from policy

® Mechanisms
» Tell the system how to accomplish something
» May be changed without changing policies
— New mechanisms may be more efficient
— New hardware may require new mechanisms
® Policies
» Tell the system what to do
» Changes in policy need not result in new mechanisms
— Existing mechanisms used in different ways
— Single operating systems can support multiple policies

© 1999 by Ethan L. Miller 3-23



How are Systems Implemented?

® Assembly language
» May be faster
» Allows access to specific features of hardware
® High-level languages
» Code Is easier and quicker to write
» Code Is more compact
» Code Is easier to understand, and thus debug
» Code can be ported (moved to other hardware) by simply
recompiling
® Some assembly language is necessary for an OS
» Low-level details of manipulating hardware
» Context switches
» Goal: minimize assembly language code

© 1999 by Ethan L. Miller 3-24



Porting Operating Systems

® Operating systems can run on multiple platforms

® To allow this, use modular code and change only what’s
necessary

» Code to do context switch and other low-level hardware
operations

» Device drivers for particular kinds of devices
® Recompile everything else for the new system

» Compiler can produce code optimized for a particular model
of CPU

» Compiler can produce code that will run on a wide range of
models

® Trade off efficiency and ease of porting

© 1999 by Ethan L. Miller 3-25



Creating an OS for aNew Machine

® Sometimes necessary to create an OS from scratch
» Brand-new architecture (PowerPC, Intel Merced)
» Brand-new OS design (BeOS)

® Make it easier by:
» Creating development tools that run on existing OS
» Recycling code for existing OS
» Running on a virtual machine with debugging tools available
— OS runs slower
— Development can begin before hardware is available

© 1999 by Ethan L. Miller 3-26



