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Course Information

• Course staff
» Professor: Dr. Ethan Miller (office in 225H ECS)

» Lecturer (Tuesday classes): Naomi Avigdor
» TA: Zhou Zhang

» Email: {elm,navigd1,zzhang}@csee.umbc.edu

• Office hours:
» Professor Miller: Thu 1-2, Fri 11-noon

» Zhou Zhang: Mon 4-5, Tue 4-5

• Web page:
» http://www.csee.umbc.edu/courses/

undergraduate/CMSC421/Fall99/0101/

» Assignments, slides, and notes all available on Web page
» Check the Web page regularly!
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Course Requirements

• Two exams
» Midterm (late October)

» Final exam

• Projects
» 3-4 projects during the semester

» ~ 3 weeks per project

» Will require lots of C programming

• Homework
» 6 homeworks during the semester

» 1 week per homework

» Graded, but individual homeworks not required to pass class
» Hand in online using submit
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Grading

• Final grades based on:
» Projects: 35% (distributed evenly across all projects)

» Homeworks: 17% (distributed evenly across all homeworks)
» Midterm: 20%

» Final: 25%

» Class participation: 3%

• Grade ranges:
» A: 89% - 100%
» B: 79% - 88%

» C: 69% - 78%

» D: 60% - 68%

• To pass the class, you must take both exams and hand in
a reasonable attempt at all projects
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Project Information

• Write the core of an operating system
» Runs on simulated hardware (DLX emulator)

– Emulator runs on Linux
– Cross-compiler runs on Linux

» Implement

– Synchronization

– User-level processes

– Virtual memory
– File system

• Learn about operating system structures
• Work with a partner on a big project

» Grades for both people are the same...
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Project Logistics

• For each project, hand in
» Detailed design description (due 1 week into project)

» Code files used to implement the project

• Use UMBC submit program

• Work may be done on campus or elsewhere
» Code must work on campus!

» Try out code before handing it in

• Projects done individually or in pairs
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Class Outline

• Introduction and historical perspective
• Process Management, IPC & Threads
• Synchronization: semaphores and monitors, deadlocks
• Process Scheduling
• Address spaces, multiprogramming, and I/O
• Memory management, address translation, and virtual

memory
• File systems & Secondary Storage
• Security and Cryptography
• Distributed systems
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What’s an Operating System?

• A program that runs on the “raw” hardware
» Acts as an intermediary between computer and users

» Standardizes the interface to the user across different types
of hardware

• Operating system goals:
» Execute user programs

» Make the computer system easier to use

» Manage hardware resources

• Potentially conflicting goals:
» Use hardware efficiently

» Give maximum performance to users
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Pieces of a Computer System

• Hardware: provides basic resources
» CPU

» Memory
» I/O devices (networks, disks, display, etc.)

• Operating system: controls and coordinates hardware
usage

• Applications: allow users to solve specific problems
» Games
» “Office” apps (spreadsheets, databases,word processing,…)

» Development applications (compilers, etc.)

• (Users)
» People or machines that use the computer system
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System Components

computer hardware

operating system

applications

word processorcompiler spreadsheet game (Myth II)

User 1 User 2 User 3 User 4
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Operating System Terms

• Kernel
» The basic “program” that’s always running

» Runs other (application) programs

• Resource
» Commodity to be allocated among applications & the

operating system

» Operating system manages this allocation

• Multiprogramming
» The ability to run more than one job at a time

• Multitasking (time sharing)
» The ability to run multiple jobs and switch quickly between

them

» Gives the illusion of having an entire computer to yourself
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Early Systems: Bare Machines

• Large machines run from consoles
» Single user system (no multiprogramming)

» Programmer was operator & user
» Programmed by punched tape or punch cards

• Early software
» Development tools (assemblers, later compilers)

» System tools (linkers & loaders)

» Software libraries
» Device drivers

• Secure
• Used hardware inefficiently

» Too much setup time per task

» CPU wasted while task waited for I/O



© 1999 by Ethan L. Miller 1-13

Next Step : Simple Batch Systems

• Full-time operator
» Users didn’t run the computer directly

» Operator batched similar jobs together

• Job sequencing
» Card reader could load in next job while current job running

» Control automatically transferred from one job to another

– First rudimentary operating system

• Full-time resident “operating system” code (monitor)
» Initial control when machine turned on

» Transfer control to job when loaded

» Return control to monitor when job finished
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Issues with Simple Batch Systems

• How does the monitor know job details?
» Fortran vs. assembly language?

» Which resident job to execute next?

• How does the monitor distinguish information
» End of one job from the start of another job?

» Job program from job data?

• Solution: control cards
» Special cards that describe the other cards

– $DATA, $JOB, $END, $FTN

» Special cards that provide instructions for the monitor

– $RUN

» Distinguished from “normal” cards with special characters in
particular columns
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Resident Monitor

• Program that runs other programs
» Control card interpreter : reads control cards and carries out

their requests

» Loader : loads system programs and regular applications into
memory

» Device drivers: know how to interface with particular devices
on the system

• Problem: slow performance
» I/O and CPU can’t overlap

» Card reader very slow

• Solution: offline operation
» Do all I/O to or from magnetic tapes (reasonably fast)

» Card reading and printing done from tapes offline
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Tapes & Off-Line Operation

• Use simpler hardware to
» Read cards onto tape
» Read output from tape to

printer

• Keep main computer free for
actual data processing

• No changes to applications
to allow off-line processing

• Real gains
» Utilize main computer more

efficiently
» Multiple card readers &

printers for a single
computer

Main computer

Tape drives

Card
reader

Printer

Simple
processor



© 1999 by Ethan L. Miller 1-17

Spooling

• Simultaneous peripheral operation on-line
» Overlap computation of one job with the I/O for another job

» Write jobs onto disk while working on another
» Output result of previous job onto disk while working on

another

• Keep a job pool
» Set of jobs on disk ready to run

» Allow CPU to select next job to run by scheduling algorithm

• As long as there are enough jobs, CPU will be utilized well
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Multiprogrammed Batch Systems

• Keep several jobs in memory at once
» Multiplex CPU among them
» Allow one job to run while another is waiting for I/O

• Benefit: CPU never idle if there are enough jobs
» Better CPU utilization
» Better job turnaround

Job 0

Job 1

Job 2

CPU usage I/O usage



© 1999 by Ethan L. Miller 1-19

Features Needed for Multiprogramming

• I/O routines supplied by the operating system
» Manage the I/O resources between jobs

» Provide a standard interface to devices

• Memory management
» Allocate memory between jobs

» Prevent jobs from interfering with one another

• CPU scheduling
» Decide which job gets the CPU next

• I/O device reservation
» Allocate some devices (printer, etc.) to a particular job
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Modern Time Sharing Systems

• CPU multiplexed among several jobs kept in memory
» Switching occurs rapidly (a few milliseconds per job)

» Jobs moved in and out of memory to keep active jobs
available

• Operating system takes commands from users
» System executes user’s job

» System requests new command from console

• File system gives users a place to store long-term data
• Result: system that gives users the illusion of having the

entire machine
» Cost-effective: users don’t need whole machine most of the

time

» Allows resource sharing (only one printer needed…)
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Personal Computers

• Computers cheap enough to put one (or several) on each
person’s desk (Macs, PCs)
» No need to time share the CPU?

• Design criteria
» Cost is very important - must be inexpensive

» Ease of use is crucial

» Efficiency not as important

• Techniques from time sharing systems may not be fully
implemented in personal computers
» Memory protection

» Full job scheduling

• Advanced techniques becoming common in personal
computer operating systems
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Evolution of OS Features

• Computers have become
cheaper over time

• Software does both more
and less

» Early systems did
everything

» Later systems more
specialized

• Operating systems
designed to meet specific
needs of the computer
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Operating Systems for Multicomputers

• Many computer systems have multiple CPUs
» Several CPUs in a single box (parallel computing)

» Several CPUs connected by networks (distributed computing)

• Operating systems have new duties
» Manage resources across several CPUs

» Move jobs from one CPU to another?

• Goal: make multiple CPUs as easy to use as a single CPU
» Create the illusion of a highly reliable, very fast single CPU
» Allow users to use any CPU without noticing any difference

» Balance the work across CPUs and other resources
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Real-Time Operating Systems

• Some computers must respond in a particular time interval
» Dedicated application (robot, anti-lock brakes, airplane

cockpit systems, medical appliances)

» Well-defined time constraints

• Two kinds of real-time systems
» “Hard” real-time systems

– System must respond in a fixed time

– Failure to do so means the system fails

– Use only ROM & semiconductor memory
» “Soft” real-time systems

– Some processes have higher priorities and should be
done as quickly as possible

– Used for less time-critical applications (virtual reality,
multimedia) where minor delays are OK



© 1999 by Ethan L. Miller 1-25

Modern Operating Systems

• Time sharing systems
» True time sharing (users protected from one another)

» Allow hundreds (or more) users per system
» Very complex: up to millions of lines of code

» UNIX (and derivatives)

» IBM MVS

» Windows NT

• Personal computers
» Memory protection recent (or not present)

» Multitasking

» Macintosh OS

» Windows 95/98

» Linux?


