
© 1999 by Ethan L. Miller 1

CMSC 421 Section 0101
Fall 1999

Professor Ethan Miller
elm@csee.umbc.edu

http://www.csee.umbc.edu/~elm/

© 1999 by Ethan L. Miller 1-2

Course Information

• Course staff
» Professor: Dr. Ethan Miller (office in 225H ECS)

» Lecturer (Tuesday classes): Naomi Avigdor
» TA: Zhou Zhang

» Email: {elm,navigd1,zzhang}@csee.umbc.edu

• Office hours:
» Professor Miller: Thu 1-2, Fri 11-noon

» Zhou Zhang: Mon 4-5, Tue 4-5

• Web page:
» http://www.csee.umbc.edu/courses/

undergraduate/CMSC421/Fall99/0101/

» Assignments, slides, and notes all available on Web page
» Check the Web page regularly!

© 1999 by Ethan L. Miller 1-3

Course Requirements

• Two exams
» Midterm (late October)

» Final exam

• Projects
» 3-4 projects during the semester

» ~ 3 weeks per project

» Will require lots of C programming

• Homework
» 6 homeworks during the semester

» 1 week per homework

» Graded, but individual homeworks not required to pass class
» Hand in online using submit

© 1999 by Ethan L. Miller 1-4

Grading

• Final grades based on:
» Projects: 35% (distributed evenly across all projects)

» Homeworks: 17% (distributed evenly across all homeworks)
» Midterm: 20%

» Final: 25%

» Class participation: 3%

• Grade ranges:
» A: 89% - 100%
» B: 79% - 88%

» C: 69% - 78%

» D: 60% - 68%

• To pass the class, you must take both exams and hand in
a reasonable attempt at all projects

© 1999 by Ethan L. Miller 1-5

Project Information

• Write the core of an operating system
» Runs on simulated hardware (DLX emulator)

– Emulator runs on Linux
– Cross-compiler runs on Linux

» Implement

– Synchronization

– User-level processes

– Virtual memory
– File system

• Learn about operating system structures
• Work with a partner on a big project

» Grades for both people are the same...

© 1999 by Ethan L. Miller 1-6

Project Logistics

• For each project, hand in
» Detailed design description (due 1 week into project)

» Code files used to implement the project

• Use UMBC submit program

• Work may be done on campus or elsewhere
» Code must work on campus!

» Try out code before handing it in

• Projects done individually or in pairs

© 1999 by Ethan L. Miller 1-7

Class Outline

• Introduction and historical perspective
• Process Management, IPC & Threads
• Synchronization: semaphores and monitors, deadlocks
• Process Scheduling
• Address spaces, multiprogramming, and I/O
• Memory management, address translation, and virtual

memory
• File systems & Secondary Storage
• Security and Cryptography
• Distributed systems

© 1999 by Ethan L. Miller 1-8

What’s an Operating System?

• A program that runs on the “raw” hardware
» Acts as an intermediary between computer and users

» Standardizes the interface to the user across different types
of hardware

• Operating system goals:
» Execute user programs

» Make the computer system easier to use

» Manage hardware resources

• Potentially conflicting goals:
» Use hardware efficiently

» Give maximum performance to users

© 1999 by Ethan L. Miller 1-9

Pieces of a Computer System

• Hardware: provides basic resources
» CPU

» Memory
» I/O devices (networks, disks, display, etc.)

• Operating system: controls and coordinates hardware
usage

• Applications: allow users to solve specific problems
» Games
» “Office” apps (spreadsheets, databases,word processing,…)

» Development applications (compilers, etc.)

• (Users)
» People or machines that use the computer system

© 1999 by Ethan L. Miller 1-10

System Components

computer hardware

operating system

applications

word processorcompiler spreadsheet game (Myth II)

User 1 User 2 User 3 User 4

© 1999 by Ethan L. Miller 1-11

Operating System Terms

• Kernel
» The basic “program” that’s always running

» Runs other (application) programs

• Resource
» Commodity to be allocated among applications & the

operating system

» Operating system manages this allocation

• Multiprogramming
» The ability to run more than one job at a time

• Multitasking (time sharing)
» The ability to run multiple jobs and switch quickly between

them

» Gives the illusion of having an entire computer to yourself

© 1999 by Ethan L. Miller 1-12

Early Systems: Bare Machines

• Large machines run from consoles
» Single user system (no multiprogramming)

» Programmer was operator & user
» Programmed by punched tape or punch cards

• Early software
» Development tools (assemblers, later compilers)

» System tools (linkers & loaders)

» Software libraries
» Device drivers

• Secure
• Used hardware inefficiently

» Too much setup time per task

» CPU wasted while task waited for I/O

© 1999 by Ethan L. Miller 1-13

Next Step : Simple Batch Systems

• Full-time operator
» Users didn’t run the computer directly

» Operator batched similar jobs together

• Job sequencing
» Card reader could load in next job while current job running

» Control automatically transferred from one job to another

– First rudimentary operating system

• Full-time resident “operating system” code (monitor)
» Initial control when machine turned on

» Transfer control to job when loaded

» Return control to monitor when job finished

© 1999 by Ethan L. Miller 1-14

Issues with Simple Batch Systems

• How does the monitor know job details?
» Fortran vs. assembly language?

» Which resident job to execute next?

• How does the monitor distinguish information
» End of one job from the start of another job?

» Job program from job data?

• Solution: control cards
» Special cards that describe the other cards

– $DATA, $JOB, $END, $FTN

» Special cards that provide instructions for the monitor

– $RUN

» Distinguished from “normal” cards with special characters in
particular columns

© 1999 by Ethan L. Miller 1-15

Resident Monitor

• Program that runs other programs
» Control card interpreter : reads control cards and carries out

their requests

» Loader : loads system programs and regular applications into
memory

» Device drivers: know how to interface with particular devices
on the system

• Problem: slow performance
» I/O and CPU can’t overlap

» Card reader very slow

• Solution: offline operation
» Do all I/O to or from magnetic tapes (reasonably fast)

» Card reading and printing done from tapes offline

© 1999 by Ethan L. Miller 1-16

Tapes & Off-Line Operation

• Use simpler hardware to
» Read cards onto tape
» Read output from tape to

printer

• Keep main computer free for
actual data processing

• No changes to applications
to allow off-line processing

• Real gains
» Utilize main computer more

efficiently
» Multiple card readers &

printers for a single
computer

Main computer

Tape drives

Card
reader

Printer

Simple
processor

© 1999 by Ethan L. Miller 1-17

Spooling

• Simultaneous peripheral operation on-line
» Overlap computation of one job with the I/O for another job

» Write jobs onto disk while working on another
» Output result of previous job onto disk while working on

another

• Keep a job pool
» Set of jobs on disk ready to run

» Allow CPU to select next job to run by scheduling algorithm

• As long as there are enough jobs, CPU will be utilized well

© 1999 by Ethan L. Miller 1-18

Multiprogrammed Batch Systems

• Keep several jobs in memory at once
» Multiplex CPU among them
» Allow one job to run while another is waiting for I/O

• Benefit: CPU never idle if there are enough jobs
» Better CPU utilization
» Better job turnaround

Job 0

Job 1

Job 2

CPU usage I/O usage

© 1999 by Ethan L. Miller 1-19

Features Needed for Multiprogramming

• I/O routines supplied by the operating system
» Manage the I/O resources between jobs

» Provide a standard interface to devices

• Memory management
» Allocate memory between jobs

» Prevent jobs from interfering with one another

• CPU scheduling
» Decide which job gets the CPU next

• I/O device reservation
» Allocate some devices (printer, etc.) to a particular job

© 1999 by Ethan L. Miller 1-20

Modern Time Sharing Systems

• CPU multiplexed among several jobs kept in memory
» Switching occurs rapidly (a few milliseconds per job)

» Jobs moved in and out of memory to keep active jobs
available

• Operating system takes commands from users
» System executes user’s job

» System requests new command from console

• File system gives users a place to store long-term data
• Result: system that gives users the illusion of having the

entire machine
» Cost-effective: users don’t need whole machine most of the

time

» Allows resource sharing (only one printer needed…)

© 1999 by Ethan L. Miller 1-21

Personal Computers

• Computers cheap enough to put one (or several) on each
person’s desk (Macs, PCs)
» No need to time share the CPU?

• Design criteria
» Cost is very important - must be inexpensive

» Ease of use is crucial

» Efficiency not as important

• Techniques from time sharing systems may not be fully
implemented in personal computers
» Memory protection

» Full job scheduling

• Advanced techniques becoming common in personal
computer operating systems

© 1999 by Ethan L. Miller 1-22

Evolution of OS Features

• Computers have become
cheaper over time

• Software does both more
and less

» Early systems did
everything

» Later systems more
specialized

• Operating systems
designed to meet specific
needs of the computer

mainframes
MULTICS

1950 1960 1970 1980

no
software

compilers time
shared

distributed
systems

batch

resident
monitors

minicomputers
UNIX

UNIX

1960 1970 1980

no
software

compilers
time

sharedresident
monitors

microcomputers

network computers

1970 1980

1990

1990

1990

no
software

no
software

compilers

compilers

multiuser
interactive

resident
monitors

multiuser

multiuser

multiprocessor

multiprocessor

multiprocessor

fault tolerant

fault tolerant

© 1999 by Ethan L. Miller 1-23

Operating Systems for Multicomputers

• Many computer systems have multiple CPUs
» Several CPUs in a single box (parallel computing)

» Several CPUs connected by networks (distributed computing)

• Operating systems have new duties
» Manage resources across several CPUs

» Move jobs from one CPU to another?

• Goal: make multiple CPUs as easy to use as a single CPU
» Create the illusion of a highly reliable, very fast single CPU
» Allow users to use any CPU without noticing any difference

» Balance the work across CPUs and other resources

© 1999 by Ethan L. Miller 1-24

Real-Time Operating Systems

• Some computers must respond in a particular time interval
» Dedicated application (robot, anti-lock brakes, airplane

cockpit systems, medical appliances)

» Well-defined time constraints

• Two kinds of real-time systems
» “Hard” real-time systems

– System must respond in a fixed time

– Failure to do so means the system fails

– Use only ROM & semiconductor memory
» “Soft” real-time systems

– Some processes have higher priorities and should be
done as quickly as possible

– Used for less time-critical applications (virtual reality,
multimedia) where minor delays are OK

© 1999 by Ethan L. Miller 1-25

Modern Operating Systems

• Time sharing systems
» True time sharing (users protected from one another)

» Allow hundreds (or more) users per system
» Very complex: up to millions of lines of code

» UNIX (and derivatives)

» IBM MVS

» Windows NT

• Personal computers
» Memory protection recent (or not present)

» Multitasking

» Macintosh OS

» Windows 95/98

» Linux?

