
CMSC 341

Introduction to Trees

8/3/2007 UMBC CMSC 341 TreeIntro 2

Tree ADT

� Tree definition

� A tree is a set of nodes which may be empty

� If not empty, then there is a distinguished node r,

called root and zero or more non-empty subtrees
T1, T2, … Tk, each of whose roots are connected
by a directed edge from r.

� This recursive definition leads to recursive

tree algorithms and tree properties being

proved by induction.

� Every node in a tree is the root of a subtree.

8/3/2007 UMBC CMSC 341 TreeIntro 3

A Generic Tree

8/3/2007 UMBC CMSC 341 TreeIntro 4

Tree Terminology

� Root of a subtree is a child of r. r is the parent.

� All children of a given node are called siblings.

� A leaf (or external) node has no children.

� An internal node is a node with one or more

children

8/3/2007 UMBC CMSC 341 TreeIntro 5

More Tree Terminology

� A path from node V1 to node Vk is a sequence of

nodes such that Vi is the parent of Vi+1 for 1 ≤ i ≤ k.

� The length of this path is the number of edges
encountered. The length of the path is one less
than the number of nodes on the path (k – 1 in this

example)

� The depth of any node in a tree is the length of the

path from root to the node.

� All nodes of the same depth are at the same level.

8/3/2007 UMBC CMSC 341 TreeIntro 6

More Tree Terminology (cont.)

� The depth of a tree is the depth of its deepest

leaf.

� The height of any node in a tree is the length

of the longest path from the node to a leaf.

� The height of a tree is the height of its root.

� If there is a path from V1 to V2, then V1 is an

ancestor of V2 and V2 is a descendent of V1.

8/3/2007 UMBC CMSC 341 TreeIntro 7

A Unix directory tree

8/3/2007 UMBC CMSC 341 TreeIntro 8

Tree Storage

� A tree node contains:
� Data Element

� Links to other nodes

� Any tree can be represented with the “first-
child, next-sibling” implementation.

class TreeNode

{

Object element;

TreeNode firstChild;

TreeNode nextSibling;

}

8/3/2007 UMBC CMSC 341 TreeIntro 9

Printing a Child/Sibling Tree

// depth equals the number of tabs to indent name

private void listAll(int depth)

{

printName(depth); // Print the name of the object

if(isDirectory())

for each file c in this directory (for each

child)

c.listAll(depth + 1);

}

public void listAll()

{

listAll(0);

}

� What is the output when listAll() is used for
the Unix directory tree?

8/3/2007 UMBC CMSC 341 TreeIntro 10

K-ary Tree

� If we know the maximum number of children

each node will have, K, we can use an array

of children references in each node.

class KTreeNode

{

Object element;

KTreeNode children[K];

}

8/3/2007 UMBC CMSC 341 TreeIntro 11

Pseudocode for Printing a K-ary Tree

// depth equals the number of tabs to indent name

private void listAll(int depth)

{

printElement(depth); // Print the value of the

object

if(children != null)

for each child c in children array

c.listAll(depth + 1);

}

public void listAll()

{

listAll(0);

}

8/3/2007 UMBC CMSC 341 TreeIntro 12

Binary Trees

� A special case of K-ary tree is a tree whose nodes
have exactly two children pointers -- binary trees.

� A binary tree is a rooted tree in which no node can
have more than two children AND the children are

distinguished as left and right.

8/3/2007 UMBC CMSC 341 TreeIntro 13

The Binary Node Class
private static class BinaryNode<AnyType>

{

// Constructors

BinaryNode(AnyType theElement)

{

this(theElement, null, null);

}

BinaryNode(AnyType theElement, BinaryNode<AnyType> lt,
BinaryNode<AnyType> rt)

{

element = theElement; left = lt; right = rt;

}

AnyType element; // The data in the node

BinaryNode<AnyType> left; // Left child

BinaryNode<AnyType> right; // Right child

}

8/3/2007 UMBC CMSC 341 TreeIntro 14

Full Binary Tree

�

A full Binary Tree is a Binary Tree in which every node
either has two children or is a leaf (every interior node has
two children).

8/3/2007 UMBC CMSC 341 TreeIntro 15

FBT Theorem

� Theorem: A FBT with n internal nodes has

n + 1 leaf nodes.

� Proof by strong induction on the number of

internal nodes, n:

� Base case:

� Binary Tree of one node (the root) has:

� zero internal nodes

� one external node (the root)

� Inductive Assumption:

� Assume all FBTs with up to and including n

internal nodes have n + 1 external nodes.

8/3/2007 UMBC CMSC 341 TreeIntro 16

FBT Proof (cont’d)

� Inductive Step - prove true for a tree with n + 1 internal
nodes (i.e. a tree with n + 1 internal nodes has (n + 1)
+ 1 = n + 2 leaves)
� Let T be a FBT of n internal nodes.

� It therefore has n + 1 external nodes. (Inductive Assumption)

� Enlarge T so it has n+1 internal nodes by adding two nodes to
some leaf. These new nodes are therefore leaf nodes.

� Number of leaf nodes increases by 2, but the former leaf
becomes internal.

� So,

� # internal nodes becomes n + 1,

� # leaves becomes (n + 1) + 1 = n + 2

8/3/2007 UMBC CMSC 341 TreeIntro 17

Perfect Binary Tree

� A Perfect Binary Tree is a full Binary Tree in

which all leaves have the same depth.

8/3/2007 UMBC CMSC 341 TreeIntro 18

PBT Theorem

� Theorem: The number of nodes in a PBT is

2h+1-1, where h is height.

� Proof by strong induction on h, the height of the

PBT:

� Notice that the number of nodes at each level is 2l.
(Proof of this is a simple induction - left to student as

exercise). Recall that the height of the root is 0.

� Base Case:

The tree has one node; then h = 0 and n = 1 and 2(h +

1) = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n.

� Inductive Assumption:

Assume true for all PBTs with height h ≤ H.

8/3/2007 UMBC CMSC 341 TreeIntro 19

Proof of PBT Theorem(cont)

� Prove true for PBT with height H+1:

� Consider a PBT with height H + 1. It consists
of a rootand two subtrees of height H.

Therefore, since the theorem is true for the
subtrees (by the inductive assumption since

they have height = H)

� (2(H+1) - 1) for the left subtree

� (2(H+1) - 1) for the right subtree

� 1 for the root

� Thus, n = 2 * (2(H+1) – 1) + 1

= 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1

8/3/2007 UMBC CMSC 341 TreeIntro 20

Complete Binary Trees

� Complete Binary Tree

� A complete Binary Tree is a perfect Binary

Tree except that the lowest level may not be

full. If not, it is filled from left to right.

8/3/2007 UMBC CMSC 341 TreeIntro 21

Tree Traversals

� Inorder

� Preorder

� Postorder

� Levelorder

8/3/2007 UMBC CMSC 341 TreeIntro 22

Constructing Trees

� Is it possible to reconstruct a Binary Tree

from just one of its pre-order, inorder, or post-

order sequences?

8/3/2007 UMBC CMSC 341 TreeIntro 23

Constructing Trees (cont)

� Given two sequences (say pre-order and

inorder) is the tree unique?

8/3/2007 UMBC CMSC 341 TreeIntro 24

How do we find something in a Binary

Tree?
� We must recursively search the entire tree.

Return a reference to node containing x, return
NULL if x is not found

BinaryNode<AnyType> find(Object x)

{

BinaryNode<AnyType> t = null;

// found it here

if (element.equals(x)) return element;

// not here, look in the left subtree

if(left != null)

t = left.find(x);

// if not in the left subtree, look in the right subtree

if (t == null)

t = right.find(x);

// return pointer, NULL if not found

return t;

}

8/3/2007 UMBC CMSC 341 TreeIntro 25

Binary Trees and Recursion

� A Binary Tree can have many properties

� Number of leaves

� Number of interior nodes

� Is it a full binary tree?

� Is it a perfect binary tree?

� Height of the tree

� Each of these properties can be determined

using a recursive function.

8/3/2007 UMBC CMSC 341 TreeIntro 26

Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t)

{

// base case – usually empty tree

if (t == null) return xxxx;

// determine if the node pointed to by t has the property

// traverse down the tree by recursively “asking” left/right

children

// if their subtree has the property

return theResult;

}

8/3/2007 UMBC CMSC 341 TreeIntro 27

Is this a full binary tree?

boolean isFBT (BinaryNode<AnyType> t)

{
// base case – an empty tee is a FBT

if (t == null) return true;

// determine if this node is “full”
// if just one child, return – the tree is not full

if ((t.left && !t.right) || (t.right && !t.left))
return false;

// if this node is full, “ask” its subtrees if they are full
// if both are FBTs, then the entire tree is an FBT
// if either of the subtrees is not FBT, then the tree is not

return isFBT(t.right) && isFBT(t.left);

}

8/3/2007 UMBC CMSC 341 TreeIntro 28

Other Recursive Binary Tree Functions

� Count number of interior nodes
int countInteriorNodes(BinaryNode<AnyType> t);

� Determine the height of a binary tree. By

convention (and for ease of coding) the

height of an empty tree is -1
int height(BinaryNode<AnyType> t);

� Many others

8/3/2007 UMBC CMSC 341 TreeIntro 29

Other Binary Tree Operations

� How do we insert a new element into a binary

tree?

� How do we remove an element from a binary

tree?

