
Red-Black Trees

Bottom-Up Deletion

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 2

Recall “ordinary” BST Delete

1. If node to be deleted is a leaf, just delete it.

2. If node to be deleted has just one child,

replace it with that child (splice)

3. If node to be deleted has two children,

replace the value in the node by its in-order

predecessor/successor’s value then delete

the in-order predecessor/successor

(a recursive step)

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 3

Bottom-Up Deletion

1. Do ordinary BST deletion. Eventually a
“case 1” or “case 2” deletion will be done
(leaf or just one child).

-- If deleted node, U, is a leaf, think of
deletion as replacing U with the NULL
pointer, V.

-- If U had one child, V, think of deletion
as replacing U with V.

2. What can go wrong??

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 4

Which RB Property may be violated

after deletion?

1. If U is Red?

Not a problem – no RB properties violated

2. If U is Black?

If U is not the root, deleting it will change

the black-height along some path

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 5

Fixing the problem

� Think of V as having an “extra” unit of

blackness. This extra blackness must be

absorbed into the tree (by a red node), or

propagated up to the root and out of the tree.

� There are four cases – our examples and

“rules” assume that V is a left child. There

are symmetric cases for V as a right child.

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 6

Terminology

� The node just deleted was U

� The node that replaces it is V, which has

an extra unit of blackness

� The parent of V is P

� The sibling of V is S

Black Node

Red Node

Red or Black and don’t care

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 7

Bottom-Up Deletion

Case 1

� V’s sibling, S, is Red

� Rotate S around P and recolor S & P

� NOT a terminal case – One of the other

cases will now apply

� All other cases apply when S is Black

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 8

Case 1 Diagram

P

SV+
P

S

V+

Rotate S around P

P

V+

S

Recolor S & P

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 9

Bottom-Up Deletion

Case 2
� V’s sibling, S, is Black and has two Black

children.

� Recolor S to be Red

� P absorbs V’s extra blackness

� If P is Red, we’re done (it absorbed the blackness)

� If P is Black, it now has extra blackness and problem

has been propagated up the tree

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 10

Case 2 diagram

P

SV+

P+

SV

Recolor S

P absorbs blackness

Either extra Black absorbed by P

or

P now has extra blackness

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 11

Bottom-Up Deletion

Case 3

� S is Black

� S’s right child is RED (Left child either color)

� Rotate S around P

� Swap colors of S and P,
and color S’s right child Black

� This is the terminal case – we’re done

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 12

Case 3 diagrams

P

SV+
P

S

V+

Rotate S around P

P

S

V
Swap colors of S & P

Color S’s right child Black

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 13

Bottom-Up Deletion

Case 4
� S is Black, S’s right child is Black and S’s left

child is Red

� Rotate S’s left child around S

� Swap color of S and S’s left child

� Now in case 3

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 14

Case 4 Diagrams

P

SV+

P

S

V+

Rotate S’s

left around S

P

S

V+

Swap colors of S

and S’s original

left child

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 15

Top-Down Deletion

An alternative to the recursive “bottom-up”

deletion is “top-down” deletion.

This method is iterative. It moves down the

tree only, “fixing” things as it goes.

What is the goal of top-down deletion?

8/3/2007 UMBC CSMC 341 Red-Black-Trees-2 16

65

50 80

10 60 70 90

62

Perform the following deletions, in the order specified

Delete 90, Delete 80, Delete 70

