
Lists - I

The List ADT

2

List ADT (expanded from Weiss)

• A list is a dynamic ordered tuple of
homogeneous elements

A1, A2, A3, …, AN

where Ai is the ith element of the list
• Definition: The position of element Ai is i;

positions range from 1 to N inclusive
• Definition: The size of a list is N (a list of

NO elements is called “an empty list”)

3

Other considerations

• What design considerations are there
regarding this list.

1. Will the list hold an “infinite” number of elements, or
will it have limited capacity? If so, what’s the maximum
number of elements?

2. How will the list handle insertion of duplicate elements?

3. If the list allows insertion of duplicates, how does it
handle deletion of a duplicated element?

4

Operations on a List

• List() -- construct an empty list
• List(const List &rhs) -- construct a list as a copy

of rhs
• ~List() -- destroy the list
• const List &operator= (const List &rhs)

– make this list contain copies of the elements of rhs in
the same order

– elements are deep copied from rhs, not used directly. If
L1 = (A1, A2, A3) and L2 = (B1, B2) before the
assignment, then L2 = L1 causes L2 = (A1, A2, A3)

5

Operations on a List (cont)
• bool isEmpty() const -- returns true if the list size is zero
• void makeEmpty() -- causes the list to become empty
• void remove (const Object &x)

– the first occurrence of x is removed from the list, if it is
present. If x is not present, the list is unchanged.

– an occurrence of x is an element Ai of the list such that
Ai == x

• Also:
• insert
• find
• findPrevious

6

What’s Missing?
• There is no size() method that returns the size of

the list
• There is no retrieve(int i) or operator[int i]

method that access the ith element in the list

So, it’s NOT possible to write code like this:
 for (int i = 1; j < L.size(); i++)

cout << L.retrieve (i);

How do we “scan” a list and look at all the elements,
one at a time?

7

Iterators

• An iterator is an object that provides access
to the elements of a collection (in a
specified order) without exposing the
underlying structure of the collection.
– order dictated by the iterator

– collection provides iterators on demand

– each iterator on a collection is independent

– iterator operations are generic

8

Iterator Operations

• bool isPastEnd() -- returns true if the iterator is
past the end of the list

• void advance() -- advances the iterator to the next
position in the list. If the iterator is already past
the end, no change.

• const Object &retrieve() -- returns the element in
the list at the current position of the iterator. It is
an error to invoke retrieve() on an iterator that
isPastEnd

9

List Operations
• ListIter<Object> first() -- returns an iterator representing the first

element on the list

• ListIter<Object> zeroth() -- returns an iterator representing the header
of a list

• ListIter<Object> find(const Object &x) -- returns an iterator
representing the first occurrence of x in the list. If x not present, the
iterator isPastEnd.

• ListIter<Object> findPrevious(const Object &x) -- returns an iterator
representing the element before x in the list. If x is not in the list, the
iterator represents the last element in the list. If x is first element (or
list is empty), the iterator returned is equal to the one returned by
zeroth().

10

“scanning” a Collection

Iterator iter = collection.first ();

while (! iter.isPastEnd ())

{

Object x = iter.retrieve() ;

// do something with x

iter.advance ();

}

11

List Operators (cont)

• void insert (const Object &x, const
 ListIter<Object> &p)

– inserts a copy of x in the list after the element
referred to by p

– if p isPastEnd, the insertion fails without an
indication of failure.

12

Ex: Building a List

List<int> list; // empty list of int

ListIter<int> iter = list.zeroth();

for (int i=0; i < 5; i++) {
list.insert(i, iter);
iter.advance();

}

13

Ex: Building a List #2

List<int> list; // empty list of int

ListIter<int> iter = list.zeroth();

for (int i=0; i < 5; i++) {
list.insert(i, iter);

}

14

More List Operations

• Find an element in the list and return it’s
position

• Return the value of the Nth element

• Determine if the list is full

• Determine if the list is empty

• Print the list

