CMSC 341

K-D Trees

K-D Tree

e Introduction

— Multiple dimensional data
« Range queries in databases of multiple keys:
Ex. find persons with
34 < age <49 and $100k =< annual income < $150k
* GIS (geographic information system)
e Computer graphics
— Extending BST from one dimensional to k-dimensional
« It is a binary tree
* Organized by levels (root is at level 0, its children level 1, etc.)

« Tree branching at level 0 according to the first key, at level 1
according to the second key, etc.

« KdNode

— Each node has a vector of keys, in addition to the two pointers to
its left and right subtrees.

K-D Tree

/ o551
o

A 2-D tree example

K-D Tree Operations

e Insert
— A 2-D item (vector of size 2 for the two keys) is inserted
— New node is inserted as a leaf
— Dafferent keys are compared at different levels
* Find/print with an orthogonal (square) range
high[1]

key[1]

low[1] key[0]
low[0] high[0]

— exact match: insert (low[level] = high[level] for all levels)

— partial match: (query ranges are given to only some of the k
keys, other keys can be thought in range +)

K-D Tree Insertion

template <class Comparable>
void KdTree <Comparable>::insert (const vector<Comparable> &x)

{

insert (x, root, 0);

template <class Comparable>
void KdTree <Comparable>::
insert (const vector<Comparable> &x, KdNode * & t, 1nt level)
{
if (t == NULL)
t = new KdNode (x) ;
else 1f (x[level] < t->datallevel])
insert (x, t->left, 1 - level);
else
insert(x, t->right, 1 - level);

Insert (55, 62) into the following 2-D tree

K-D Tree: printRange

/**

* Print items satisfying

* low[0] <= x[0] <= high[0] and
* low[l] <= x[1] <= high[1]

*/

template <class Comparable>
void KdTree <Comparable>::
printRange (const vector<Comparable> &low,
const vector<Comparable> & high) const

printRange (low, high, root, 0);

K-D Tree: printRange (cont’d)

template <class Comparable>

void KdTree <Comparable>::

printRange (const vector<Comparable> &low,
const vector<Comparable> &high,
KdNode * t, int level)

if (t !'= NULL)
{
1f (low[0] <= t->data[0] && high[0] >= t->datal0]
&& low[l] <= t->data[l] && high[l] >= t->datall])
cout << “(” << t->data[0] ”,”
<< t->datal[l] <<)" << endl;
if (low[level] <= t->datallevel])
printRange (low, high, t->left, 1 - level);
if (high[level] >= t->data[level])
printRange (low, high, t->right, 1 - level);

printRange 1n a 2-D Tree

In range? If so, print cell

Low]|level|<=data[level]->search t->left *
High[level] >= data[level]=> search t->right

el @
I C70.3 >

‘j \.
(73,750

low[0] = 35, high[0] = 40;
low[1] = 23, high[1] = 30;

This subtree is never searched

Searching is “preorder”. Efficiency is obtained
by “pruning” subtrees from the search.

K-D Tree Performance

e Insert
— Average and balanced trees: O(Ig N)
— Worst case: O(N)

* Print/search with a square range query

— Exact match: same as insert (low[level] = high[level]
for all levels)
— Range query: for M matches
 Perfectly balanced tree:
K-D trees: O(M + kN (-1/k))
2-D trees: OM +VN)
 Partial match
in a random tree: O(M + N¢) where o. = (-3 +V17) /2

K-D Tree Performance

More on range query in a perfectly balanced 2-D tree:
— Consider one boundary of the square (say, low[0])

— Let T(N) be the number of nodes to be looked at with respect
to low[0]. For the current node, we may need to look at

* One of the two children (e.g., node (27, 28), and

* Two of the four grand children (e.g., nodes (30, 11) and (31,
85).

— Write T(N) =2 T(N/4) + ¢, where N/4 1s the size of subtrees 2
levels down (we are dealing with a perfectly balanced tree
here), and ¢ = 3.

— Solving this recurrence equation:
T(N)=2T(N/4) + ¢ =2(2T(N/16) +¢) + ¢

= ¢(1+2+ - +27(log, N) = 2(1+ log, N) - 1
=2#27(log, N) — 1 = 2/ ((log, N)/2) — 1 = O(VN)

K-D Tree Remarks

e Remove

— No good remove algorithm beyond lazy deletion (mark
the node as removed)

« Balancing K-D Tree
— No known strategy to guarantee a balanced 2-D tree
— Tree rotation does not work here
— Periodic re-balance
« Extending 2-D tree algorithms to k-D
— Cycle through the keys at each level

