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Abstract

We present a simple, implicit data structure for implementing a
double-ended priority queue. The data structure can be viewed as a
natural generalization of the heap, and is different from a data struc-
ture for the same problem recently proposed by Atkinson et al. A
number of applications to computational geometry are discussed. By
generalizing the approach for d-dimensional data, a (dynamic) implicit
data structure is obtained for complementary range searching in O(K)
time per query and with ©(logn) update times, for fixed d and K the
number of answers of a query. Several related ideas and applications
are also discussed.

Keywords and phrases: implicit data structure, heap, double-ended

priority queue, median searching, range searching, complementary range
searching.

1 Introduction

Let X be a totally ordered domain of values. (Think of X as being some
subset of R.) A double-ended priority queue is a data structure for finite
subsets of X that supports the following operations:

1. MIN — determine the smallest value.
2. MAX — determine the largest value.

3. INSERT(z) — add a value z € X to the subset.
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4. DELETEMIN — remove the smallest value.
5. DELETEMAX — remove the largest value.

In this paper we will consider the problem of designing an efficient implicit
data structure for double-ended priority queues, that is, a data structure
for maintaining a set of n values from X in the positions A[1] through
A[n] of an array A without additional pointers and supporting the listed
operations in ©(log n) time or less per operation. We assume that the reader
is familiar with the usual data structures for implementing ordinary, that
is, single-ended priority queues (cf. [1,8,13]). In particular we will assume
familiarity with heaps. Heaps only support the operations (1), (3) and (4)
or, alternatively, the operations (2), (3) and (5) from the list above.

An interesting implicit data structure for implementing double-ended
priority queues was proposed by Atkinson et al. [2] in 1984 (see also [3]
The MIN/MAX heap proposed by Atkinson et al. is organised like a heap,
except that a different ordering relation is employed: values at even-level
nodes must be less than or equal to all values at descendant nodes, and
values at odd-levels nodes must be greater than or equal to all values at
descendant nodes. Atkinson et al. show that MIN/MAX heaps can be
constructed in ©(n) time, support MIN and MAX operations in ©(1) time
and the remaining operations for double-ended priority queues in ©(log n)
time. (By applying the techniques of Gonnet and Munro [7] the time-bound
for INSERTs can be improved to O(loglogn).) They argue that the kind
of ordering relation imposed on MIN/MAX heaps can also be applied to
other structures for single-ended priority queues, to obtain implementations
of double-ended priority queues. Another implicit data structure for the
problem has been devised by Carlsson[5]. The data structure he proposed
consists of two heaps, one organised as a MIN-heap and the other as a
MAX-heap, with the property that the value in any leaf of the MIN-heap
is smaller than the value in the corresponding leaf (or its parent, when the
corresponding position is not a leaf) of the MAX-heap. The structure is easy
to maintain and, in fact, quite closely related to the ideas that we develop
in this paper.

In this paper we propose a different implicit data structure for double-
ended priority queues that seems to generalize heaps in a more natural way.
The data structure is called an interval heap, and essentially consists of a
heap in which each node carries a pair of values a,b (with a < b) from the
current set, considered as the endpoints of an interval of X. The usual heap
property is replaced by the requirement that, for each node, the interval at
this node contains the intervals at its children. (Note the similarity with
the heap property for ordinary heaps.) If [a,b] is the interval at the root,
then the heap property implies that a is the current MIN and b the current
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MAX of the subset. A more precise definition of interval heaps is given in
Section 2. In Section 2 we prove that interval heaps can be built in ©(n)
time, support MIN and MAX operations in ©(1) time, and the remaining
operations for double-ended priority queues in ©(logn) time or less. We
also discuss a number of interesting applications of interval heaps to, for
example, the theory of order statistics, in Section 3.

In Section 4 we consider an interesting variant of interval heaps that we
call interval *heaps. In interval *heaps the heap property is the reverse of
the one for interval heaps, namely, for each node the associated interval is
contained in all the intervals in its subtree. This implies that the two values
at the root are medians of the given set of values. The structure allows us to
dynamically maintain the median. A ‘natural’ bottom-up approach to up-
dating interval *heaps that is analogous to the approach taken for interval
heaps yields an O(log? n) update time. Fortunately, however, a different ap-
proach yields an O(log n) update time. Interval *heaps enable us to answer
specific restricted range queries in ©(K) time, where K is the number of
answers. Finally, in Section 5 we develop a generalization of interval heaps
for the case of multi-dimensional data. The resulting implicit data struc-
ture (called a d-interval heap) enables us to solve the complementary range
searching problem in ©(K) time per query and with ©(logn) update time,
for fixed dimension d and for K the number of answers to the query.

We have developed an implicit data structure based on heaps, but with
different kinds of objects at the nodes and with a very special ordering rela-
tion enforced between the objects in the heap structure. The interval heaps
studied in this paper expose the generality of the traditional algorithms for
manipulating heaps, and show that heaps are a more universal data struc-
ture than commonly assumed in the theory of sorting. At the same time our
study seems to open the way for the design and analysis of implicit data
structures for use in the theory of multi-dimensional data structures and
computational geometry. The complementary range searching problem is

only the first of a number of problems currently being explored from this
perspective.

2 Interval Heaps

There are two ways of looking at ordinary heap structures with n elements
(see for example, [1,8,13]).

1. As a binary tree of n nodes with all levels completely filled from left to
right except for, perhaps, the lowest level which only contains as many
nodes as are needed to bring the count to n, that is, a left complete
binary tree.
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2. As an array H with its locations H[1] to H[n] corresponding to the
consecutive nodes, taken level by level, of the binary tree.

We will use the binary tree representation of heaps to simplify our discussion
below, but note that all our manipulations could be carried out by simple
address-calculations and accesses on the array H (as for ordinary heap struc-
tures). Also note that we have divorced the concept of heap structure from
the details of the represented values and of the ordering relation that should
hold between these values. As it stands, we could associate any type of
objects to the nodes and impose any ordering relation between the objects
at the nodes that is consistent with the idea of heaps, to obtain some kind
of object heap. In this section we introduce interval heaps, which are ob-
tained by associating (closed) intervals [a,b] (a,b € X) to the nodes. Let
I(v) denote the interval associated with node v. Let the n** (and last) node
of a heap structure be called the left-end node or, simply, the L-node of the
structure.

Definition 2.1 Aninterval heap is a heap structure that is either empty or
satisfies the following three conditions (the heap property):

1. For each node v different from the L-node, I(v) is an interval [a,b](a,b €
X).

2. For the L-node v, I(v) is either a single value a (a € X) or an interval
[a,d](a,b € X).

3. For all nodes v and w, if v is a child of w then I(v) C I(w).

In the definition a distinction is made between single values and intervals
[a,a] that contain only one distinct value from X (although it takes two
values from X to specify the interval). For simplicity the C-relation is
extended to cover the inclusion of single values in intervals as well. Observe
that interval heaps are easily implemented as implicit data structures: every
location of the array H holds two values except possibly for the last location

which contains either one or two values, depending on whether the set-size
is odd or even.

An interval heap represents the set or, more precisely, the multi-set con-
sisting exactly of the values of X that are used to delimit the left or right
end of an interval in the structure and, in case the L-node does not hold
an interval, the value at the L-node. The main result of this section will
be that interval heaps are a viable implicit data structure for implementing
double-ended priority queues. We begin by considering the repertoire of
operations given in Section 1.

Proposition 2.1 Interval heaps support MIN and MAX operations in ©(1)
time.
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Proof: Let I be an interval heap and r be the root node of I. If r is the
L-node of I and contains only a single value a (a € X), then the (multi-)set
represented by I is the singleton set {a} and MIN = MAX = a. Other-
wise, let [a,b] be the interval at r. By the heap property it follows that the
entire set represented by I must be contained in the interval [a,b] and that
(hence) MIN = a and MAX = b. (If r does not exist, then I is empty and
MIN = MAX = undefined.) Thus MIN and MAX can be determined in
(1) time. m]

Lemma 2.2 Interval heaps support INSERT operations in ©(logn) time.

Proof: Let I be an interval heap and z a value to be added to I. If T
is empty, initiate a root node r and let z be the single value at r. If I is
nonempty and its L-node v contains a single value @ (¢ € X), then proceed
as follows. Compare a and z, and assume, without loss of generality, that
a < z. Replace the value a at v by the interval [a,z]. (Note that the
new interval may violate the heap property at the parent of v.) Assume
inductively that we are considering a node v and its parent w, and that we
have just replaced the value or interval at v by the interval [a, z] (extending
the original value or interval to the right). Let the interval associated with
w be [c,d] where, necessarily, a € [¢,d]. When z < d, the heap property
is satisfied and I has been restored to a valid interval heap. When z > d,
replace the interval at v by [a, d] and the interval at w by [¢, w] (which means
that the heap property is satisfied everywhere except, perhaps, on the path
from w to the root), and observe that the inductive assumption now holds
at w and its parent (if it has one). Working upwards along the path from
the L-node to the root, the heap property is restored at the expense of only
©(1) time per node and (hence) O(logn) time total.

If I is nonempty and the L-node contains an interval, then proceed as
follows. Allocate the next node of the heap structure (call it v) and let =
be the single value at v. Let w be the parent of v, and let the interval at
w be [a,d]. If = € [a,b] then I is a valid interval heap. Otherwise, assume,
without loss of generality, that < z. Now z can trickle up along the path
towards the root exactly as before, and the heap property is gradually re-
stored within O(logn) time. ]

Observe that an n-node interval heap represents a set of 2n — 1 or 2n
elements. By inserting elements into an initially empty interval heap, the
lemma shows that every finite set can be represented as an interval heap.
Also, the insertion procedure outlined in the lemma is essentially the pro-
cedure for inserting into an ordinary heap, namely the heap of all left-end
values or all right-end values (together with the value at the L-node, when
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it does not contain an interval). The heap given by removing all right-end
values is a MIN heap, while that given by removing all left-end values is a
MAX heap. We call these the underlying MIN and MAX heaps. It follows
that the techniques of Gonnet and Munro [7] immediately apply to obtain a
faster insertion algorithm. It is a simple exercise to prove that interval heaps
also support the remaining operations for double-ended priority queues.

Proposition 2.8 Interval heaps support DELETEMIN and DELETEMAX
operations in ©(logn) time.

Proof: We only sketch the argument for DELETEMIN operations. (DELETE-
MAX operations are handled in a very similar way.) Let I be an interval heap.
If the root node is the L-node of I, then the DELETEMIN operation is ex-
ecuted by simply dropping the MIN-value from the structure (cf. the proof
of Proposition 2.1.). Let’s assume that the root node is not the L-node of I,
and that [a,b](a,b € X) is the interval at the root. Now MIN = a and the
DELETEMIN operation can be executed as follows. Look at the underlying
MIN heap of I. Delete a and fill its place by following the usual technique
for heaps. It means that the empty place is moved down in the tree and
the heap property restored until the empty place reaches the bottom of the
tree. In the interval heap it means that we have reached a leaf node v whose
interval has just lost its left-end value. In case v is the L-node of I, we are
done: the new heap structure is again a valid interval heap. (This holds
even in the case that v contained just a single value a, which it lost because
the a moved up.) If v is not the L-node of I, then pick one of the (at most)
two values at the L-node and add it to v (thus restoring the object at v to
be an ordinary interval). Now use the procedure outlined in the proof of
Lemma 2.2 starting at v, to restore the heap property of I. It is clear that
the DELETEMIN operation takes ©(log n) time. O

Theorem 2.4 Interval heaps are an efficient, implicit data structure for
implementing double-ended priority queues which support MIN and MAX
operations in ©(1) time and the remaining operations in O(log n) time.

From the given proofs it should be clear that interval heaps essentially have
the same efficiency as heaps (or any variant of them), because the update
operations work almost entirely on the separate underlying heaps of all left-
end values and all right-end values, respectively.

A remaining question concerns the construction of an n-node interval
heap from a given set of 2n — 1 or 2n values in arbitrary order. A linear
time algorithm for it is obtained by applying the well-known construction
of Floyd[6], as follows. The crucial observation is contained in the following
lemma.
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Lemma 2.5 Let I and I, be interval heaps, [a,b] an (arbitrary) interval,
and I the tree with I and Iy as its left and right subtrees, respectively, and
[a, b] be the interval at the root. Then the heap property for I can be restored
in time proportional to the mazimum of the depths of I, and I,.

Proof: (Note that I is not necessarily an interval heap, because it may not
be heap-structured.) We give a simple, but not very efficient procedure for
it. Look at the trees T} of T3 of all left-end and all right-end values, re-
spectively, both structured like I. Remove a from the root of T} and follow
the usual procedure for heaps to fill its place and heapify the structure. It
will put some value @' at the root (the smallest from the set) but leave an
open place at some leaf node v. Remove b from the root of T, and carry
out the same procedure. It will put some value b’ at the root (the largest
from the set) and leave an open place at some leaf node w. Observe that
a’ < b and that all values in I; or I, are contained in [a’,b]. It is easily
seen that combining the values at corresponding nodes of T; and T} leads to
valid intervals that satisfy the heap-property. Now insert @ at node w as in
interval heaps and, subsequently, b at node v. This will restore the structure
of I and ensure that it satisfies the heap-property, as required, in time no
greater than four times the maximum of the depths of I; and I, (plus one).
]

Theorem 2.8 Interval heaps can be created in ©(n) time and constant extra
space.

Proof: Arrange all values as intervals at the nodes of a heap structure, with
a single value perhaps at its L-node. Now heapify the structure, level by
level, working from the lowest level upwards as in Floyd’s method for ordi-
nary heaps, using lemma 2.5 in every node. This turns the structure into a
valid interval heap, and the total time is ©(n) by the same analysis as for
Floyd’s method. O

3 Applications of Interval Heaps

We discuss a number of applications of interval heaps in the theory of data
structures (see also Section 4). Clearly interval heaps can be used to obtain
an efficient, implicit data structure for implementing order-statistics trees as
defined in Atkinson et al.[3]. We mention a number of different applications
to problems for which no efficient, implicit data structures were given before.

In the usual embedding in an array H, an interval heap always grows
and shrinks at the right-hand end (at the current L-node) when insertions
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and deletions are carried out. It may be useful to have a structure with
the property that it shrinks on the left when DELETEMIN is carried out
and on the right when DELETEMAX is carried out. An example of where
this can be used is double heapsort, the obvious modification of heapsort
in which an array is sorted by working both at the low and at the high
end of the ordering simultaneously (that is, alternatingly). For this example
interval heaps provide a particularly cheap and easy solution, in the following
manner. Assume the array to be sorted contains 2n values. Rearrange
the values into an n-node interval heap in ©(n) time, with the left-end
and the right-end values of the interval associated to node i in positions
n+1—1 and n 4+ of the array (i from n to 1). Because DELETEMIN and
DELETEMAX operations alternate in double heapsort, the interval heap
can indeed be made to shrink at the proper ends during every sort-step in
this representation. It makes double heapsort a valid sorting algorithm for
arrays which, in view of the efficiency of the deletion operations, will be
competitive with heapsort.

A more interesting application concerns the range query problem in the
theory of multi-dimensional data structures and computational geometry
(see for example, Preparata and Shamos[12]). In this section we only study
the 1-dimensional version of it and, in fact, consider the complementary
problem first. This problem is defined as follows: given a set V of n points
on the real line and any interval [z, y], determine the points of V that are
not contained in the interval. In the dynamic variant of the problem one
asks for an algorithm (and a data structure) that is efficient even when
insertions and deletions of points are allowed. Organizing the points of V
in a (dynamic) balanced tree (cf.[8)]) easily leads to a solution with a query
time of ©(logn + K), where K is the number of points to be reported.

Theorem 8.1 There is an implicit data structure for the (dynamic) 1-
dimensional complementary range query problem that requires ©(n) time
to build and supports queries in O(K) time.

Proof: Organize the points of V into an interval heap I. We show that com-
plementary range queries can be answered in ©(K) time. Let [z, y] be the
query interval. The query algorithm starts at the root and proceeds recur-
sively in the following manner whenever a node v is visited. We distinguish
the two cases that can arise when we compare I(v) and [z, y].

Case (i) I(v) C [z,y]. In this case no point of V at v or in its subtree must
be reported. The algorithm ignores the entire subtree and progresses
to the next node.

Case (ii) I(v)N [z,y] C I(v). In this case I(v) contains at least one end-
point that is not contained in [z, y] and this value must be reported. If
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the other endpoint is not contained in [z, y] either, it must be reported
as well. If v is not a leaf, the algorithm will visit the children of v next.

The query algorithm is easily implemented as a pre-order traversal of
I, with pruning of the subtrees that are recognized as not containing any
answers (Case(i)).

The complexity of the query algorithm is ©(K) by the following argu-
ment. The algorithm is linear in the number of nodes that are visited. If
Case(ii) arises in a node, the cost for visiting the node can be charged to
the one or two points that are reported at this node. If Case (i) arises in
a node v, then observe that we can only have reached v if Case(ii) arose in
the parent of v. (The argument is trivially modified when v is the root.)
Thus the cost for visiting v can be charged to the point(s) reported at the
parent of v. As no node has more than two children, no point can obtain
more than ©(1) extra charge. The time bound of ©(K) follows. O

Note that the implicit data structure in the proof of Theorem 3.1 is
dynamic in the following sense. It supports insertions in ©(logn) time, but
deletions (in the same time bound) only if the location of the element to
be deleted is known. The fact that interior points of a heap can be deleted
in O(logn) time is well-known, and the algorithm for it easily extends to
interval heaps.

The ordinary 1-dimensional range query problem is defined as follows:
given a set V of n points and any interval [z, y], determine the points of V
that are contained in the interval. Quite surprisingly it appears to be much
harder to design a dynamic, implicit data structure for the 1-dimensional
range query problem (which can be built in linear time) than it was for
the complementary problem. We only mention the following result. The
1-dimensional halfspace query problem is the version of the 1-dimensional
range query problem in which either £ = —o00 or y = +00.

Theorem 8.2 1. There is an implicit data structure for the (static) 1-
dimensional range query problem that requires ©(nlogn) time to build
and supports queries in O(logn + K) time.

2. There is an implicit data structure for the (dynamic) 1-dimensional
halfspace query problem that requires ©(n) time to build and supports
queries in O(K) time.

Proof: 1. Sort V in ©(nlogn) time, and assign the values of V in this order
to the consecutive nodes visited in an in-order traversal of a heap-structure
of n nodes. Let T be the resulting tree, and [z, y] an arbitrary query interval.
(Observe that T is a binary search tree; see for example[8].) Let T'(v) be
the value at node v of T. Consider the following algorithm for answering
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the query. The algorithm consists of two phases. Phase I starts at the root,
and proceeds as follows in any node v that is reached. If v € [z, y] then stop
Phase I and start Phase II (at v). Otherwise, proceed to the left child of v if
y < T(v), and to the right child of v if T(v) < z. If v has no children, then
stop Phase I and report that there are no answers. Clearly Phase I must
finish within ©(logn) time. Next consider Phase II, and suppose it starts
at node v. Report T'(v), and proceed along two lines: the z-line and the
y-line. (We only sketch what happens along the z-line.) The z-line starts at
the left child of v, and the algorithm proceeds as follows in any node w that
is reached. If T(w) € [z,y] (or, equivalently, z < T(w), then report T'(w)
and all values in the right subtree of w and proceed to the left child of w. If
T(w) ¢ [z,y] (or, equivalently, T(w) < z), then simply proceed to the right
child of w. If w has no left or right child, respectively, then the z-line stops.
Phase II ends when both the z-line and the y-line have ended. Clearly Phase
II reports all answers to the query, and takes only ©(logn + K) time. (The
query algorithm is very similar to that for range trees, cf. [12].)

2. Observe that 1-dimensional halfspace queries can be viewed as 1-
dimensional complementary range queries, because the complement of a
1-dimensional halfspace is a 1-dimensional halfspace (that is, a range). The
technique of Theorem 3.1 applies without any change. O

Munro [11] has developed a dynamic data structure that allows insertions
and deletions in O(log? n) time and range queries in O(K + log?n) time,
where K is the number of answers. At present, we are unable to match
these bounds using interval heaps. We can, based on the dynamization
technique of [14], derive a dynamic implicit data structure for range queries
as follows. We represent a set of n values using [n/c] blocks of size c, for
some ¢ > 0, where the last block may be smaller than ¢. The it* block
appears in positions (i — 1)c + 1 to ic of the array. All values in any block
are greater than all values in earlier blocks and less than the values in later
blocks. Finally, each block is organized as an interval heap.

To insert an element 2 into the set, we first locate its block, say, 1.
Then we delete the maximum value y from block ¢ and insert z into block ¢
(unless z is the maximum value, when we continue with the next step). The
maximum value 2 in block ¢4 1 is now deleted and the value y is inserted into
block ¢ + 1. We now repeat this rippling process with ¢ := ¢+ 1 and y := 2
until we reach the last block. At the last block we simply insert y into its
interval heap. Once the last block grows sufficiently large we reorganize the
structure to have larger size blocks. Deletions are carried out in a similar
manner.

For a given range [z, y], we perform a range query for [z, y] by first deter-
mining the blocks z and y fall into. Let these be blocks ¢ and j, respectively.
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If i # j, the range query is easily decomposed into two complementary range
queries (one for block ¢ and one for block j) and j — i — 1 traversals. On
the other hand, if ¢ = j, we can do little better than a traversal of the
interval heap in block ¢ to determine those values that fall into the range
[z,y]. Thus, the block size determines the efficiency of range queries. If
¢ = O(log n), then we obtain logarithmic query time, in the worst case, but
updates can cause a ripple through every one of the [n/logn] blocks at
a cost of O(loglogn) per block. If we choose ¢ = O(y/nlogn), then both
query and update time become O(y/nlogn) (plus O(K) for queries).

It is an open problem whether one can use interval heaps more effectively
for the range query problem.

4 Interval *Heaps

The idea of interval heaps suggests another, related implicit data structure
which we will call an interval *heap. Essentially the interval *heap is an
interval heap with the ordering relation between the associated intervals
reversed. We use the same notation that we introduced for interval heaps.

Definition 4.1 An interval *heap is a heap structure that is either empty
or satisfies the following conditions (the *heap property):

1. For each node v different from the L-node, I(v) is an interval [a,bd]
(a,b € X).

2. For the L-node v, I(v) is either a single value a (a € X), considered
as the “interval” [a,+00], or an interval [a,b)] (a,b € X).

3. For all nodes v and w, if v is a child of w then I(w) C I(v).

Observe again that interval *heaps are easily implemented as implicit data
structures.

Lemma 4.1 Let I be an interval *heap representing a set of values V, and
[a, b] be the interval at the root. Then a and b are medians of V.

Proof: Let I have n nodes (n > 1) and let | V |> 2. (Observe that | V |
is either 2n — 1 or 2n.) By the *heap property each interval in I has a
left-end value no greater than a and a right-end value no less than 5. When
| V |= 2n, it follows that a and b are the n** and (n + 1)* value in the
ordering of V. When | V' |= 2n — 1, the position of a and b depends on the
value c at the L-node of I. If ¢ < a, then a and b are the n*» and (n + 1)*
value of V' as before, otherwise (that is, when b < ¢) they are the (n — 1)
and nt* value in the sorted order of V. o
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It follows that the median of a set can always be read off at the root
of the interval *heap. Hence, interval *heaps can be used to dynamically
maintain the median of a set. Although there are implicit data structures for
this already, for example, the mmm-heap of Atkinson et al.[3], the interval
*heap is a simpler structure with the same performance. However, interval
*heaps also seem to be useful for a particular type of range query in the
multi-dimensional case, although as implicit data structures they seem to
be more complex than (say) a pair of interval heaps back-to-back for the
equal halves of a set. We will pursue the analysis here to see the intricacies
of this type of structure.

It is easily seen that interval *heaps can be built from scratch in ©(n)
time using O(1) additional space. One algorithm for it could be as follows.
(Without loss of generality we assume that | V |= 2n.) Determine a and b
as the n*® and (n + 1)* elements in the sorted order of V using the ©(n)
median-finder of Blum et al.[4] as modified by Lai and Wood [9,10] to work
implicitly. Let V, C{z € V |2 < a} and V, = {z € V | b < z} be such that
VaUVy, =V and | V5 |=| V3 |= n. (V, and V} are easily found implicitly in
O(n) time as well.) Now organise the elements of V, as a heap under the
>-ordering and the elements of Vj, as a heap under the <-ordering. (Both
heaps have the same underlying structure.) Overlapping the two heaps and
taking the two values at every node as the defining endpoints of an interval
results in a valid interval *heap. In the case that | V |= 2n + 1,we let a
and b be the (n + 1)* and (n + 2)" values in the sorted order of V. Then
V, contains n values and V, contains n — 1 values. This ensures that the
L-node satisfies the *heap property.

It actually is quite intriguing that interval *heaps are dynamic. We first
consider an apparently rather costly, bottom-up scheme for insertions.

Lemma 4.2 Interval *heaps support INSERT operations in ©(log? n) time.

Proof: Let I be an n-node interval *heap and z a value to be added to I.
If T is empty or contains only one value, then the insertion procedure (at
the root) proceeds trivially in ©(1) time. Thus, let I be non-trivial (n > 1)
and assume that the L-node (call it v) already contains the value c¢. Let
w be the parent of v, u the sibling of v (if it exists), I(w) = [a,b] and
I(u) = [d, €] (if applicable). More generally, the procedure will be applied at
any node v where the old interval was just updated to [z, c] or [c, ], with ¢ an
endpoint of the original interval I(v), z some new value, the *heap property
restored in the subtree rooted at v and [a, b] (still) contained in all intervals
appearing below v. (This is the invariant at v.) We now distinguish 10
cases depending on the relative ordering of the values involved. Let s be the
parent of w (if it exists).
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CaseI: z<d<c<a<b<e. Leave[d,e] assigned to u, but assign [z, b]
to v and [c, a] to w. Now observe the following. By assigning [z, b] to v
the *heap property may be violated again at the top of v’s subtree (the
original interval of [z, c] is widened). But, recall that [a,b] and [z, c]
were contained in all intervals below v. Thus, [z, b] must be contained
in these intervals, and the *heap property is not endangered. Note
that the *heap property is restored in the entire subtree of w. In
fact, because I(s) C [a, )] we also have that I(s) C I(u) (unchanged)
and I(s) C I(v). Thus the invariant applies at w, and the algorithm
proceeds upwards.

CaseII: d<z<c<a<b<e. Leave[d,e] assigned to u, assign [z, b] to
v and [c,a] to w. In the same way as in Case I this establishes the
invariant at w, and the algorithm proceeds upwards.

Case III: d<c<z<a<b< e Leave[d,e] assigned to u, assign [c,b] to
v and [z, a] to w. As in Case I this establishes the invariant at w, and
the algorithm proceeds upwards.

Case IV: d<c<a<z<b<e. Leave[d,e]assigned to u, assign [c, b] to
v and [a, 2] to w. As in Case I this establishes the invariant at w, and
the algorithm proceeds upwards.

Case V: d<c<a<b<z<eord<c<a<b<e<z Observe that
the *heap property has apparently been restored in the entire tree,
and the algorithm can stop!

Case VI: z <c<d<a<b<e. This case is slightly more involved. As-
sign [c, €] to u, [z,b] to v and [d, a] to w. Because [z,c] and [a,b] are
contained in every interval appearing below v, the *heap property is
certainly maintained in the subtree headed by v. Because the interval
assigned to u is widened from [d, €] to [c, €], the *heap property may
no longer hold in the subtree of u. But it can be restored in ©(logn)
time by letting ¢ trickle downwards in the heap of left-end values. It
will replace [c, €] at u by [y, €] for some y with ¢ < y but, because of
the original *heap constraint with [d,e] at u, y < d. It follows that
[d,a] C [y,e€] and the *heap property is indeed restored at w (and
in its subtree). Because I(s) C [a,b] we also have I(s) C I(u) and
I(s) C I(v), and it follows that the invariant is restored at w. Thus
the algorithm can proceed one node further upwards.

Case VII: c<z<d<a<b<e. Assign[ce]to u,[z,b] to v and [d,q]
to w. In the same way as in Case VI the invariant can be made to
hold at node w at the expense of O(log n) time, and the algorithm can
proceed upwards.
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Case VIII: c¢<d<z<a<b<e. Leave [d, €] assigned to u, assign [c, )]
to v and [z,a] to w. As in Case III this establishes the invariant at w,
and the algorithm can proceed one step upwards.

Case IX: c<d<a<z<b<e Leave|d,e]assigned to u, assign [c,b] to
v and [a, z] to w. As is Case IV this restores the invariant at w, and
the algorithm can proceed one step upwards.

Case X: c<d<a<b<z<eorc<d<a<b<e<z. Asin CaseV
the *heap property is now restored in the entire tree and the algorithm
can stop!

Clearly this does not exhaust all possible cases that must be considered. But
the (remaining) cases with ¢ between b and e or beyond e are all symmetric
to the cases discussed above. Also, the values need not all be different for
the argument to go through. Finally, there is the case to consider that the
inductive argument starts at an L-node v which does not contain an initial
value, that is, v is a newly allocated node where the value z is inserted.
If I(w) C z (that is, z ¢ [a,}]), then the *heap property is preserved. If
z € [a,b], then assign b to v and [a, z] to w and proceed with the preceding
argument starting at w.

It is clear that by proceeding towards the root, the *heap property will
eventually be restored in at most ©(log?n) time. O

The above maintainance algorithm for *heaps parallels the one given for
interval heaps in Section 2; in this sense, it is the natural one. Unfortunately,
as we have seen, it requires O(log? n) update time. We now demonstrate
that by considering the two underlying heaps separately, we can obtain an
O(logn) update time. We are able to use a top-down method that avoids
the problems appearing in the bottom-up algorithm given above.

Lemma 4.3 Interval *heaps support INSERT operations in ©(log n) time.

Proof: Let [a, b] be the interval of the root of an interval *heap of 2n values.
The case of 2n + 1 values is similar and is, therefore, left to the reader. Let
x be the new value to be inserted. There are three cases to consider.

Case 1: v < a. The new *heap has 2n + 1 values, thus the (n + 1)** and
(n + 2)™ values must appear at the root. As a and b are, before
insertion, the n*® and (n + 1)* values, this implies that they remain
in the root. All that remains is to insert z into the underlying MAX
heap. This is done with the standard algorithm that creates a new
L-node with a single value.

Case 2: a < z < b. In this case, [z, ] becomes the new interval at the root
and a is inserted into the underlying MAX heap.
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Case 3: b < z. This is the more difficult case. We need to move a value
into the underlying MAX heap and this should be the smallest value
in the underlying MIN heap, that is, b itself. So, we first remove
b from the root, replacing it with z. In the underlying MIN heap
we trickle z down until it finds its place. This is the standard heap
deletion operation. Second, we insert b, in the standard manner, into
the underlying MAX heap.

O

In a similar manner, with the same time bounds, we can implement
DELETE, if the position of the deleted element is given; in particular, we
can delete either of the medians in O(logn) time.

Lemma 4.4 Interval *heaps support DELETE in ©(logn) time.

Proof: (We assume here that the location of the element to be deleted from
the *heap is known.) Suppose z must be deleted from the set represented
by the interval *heap, and let v be the node where z appears. If v is the
L-node, then we can just delete z and are done. Otherwise, assume, without
loss of generality, that I(v) = [z, a]. Delete z and use the ordinary algorithm
to fill the hole in the underlying MIN heap of left-end values below v. It
recreates the *heap property, except that a hole may appear in some leaf-
node u different from the L-node. Remove an element y from the current
L-node and add it to u with the algorithm of Lemma 4.3. )

As an application of interval *heaps we consider a restricted range search-
ing problem. We say that an interval [z, y] is a median range with respect to
a set V, if the median of V is contained in the query interval. We have the
associated query:

MED — determine the median value.

We can define minimum range and mazimum range in a similar manner.
It is straightforward to prove the following result:

Theorem 4.8 There is an implicit data structure for the (dynamic) median
range query problem that requires ©(n) time to build and supports median
queries in O(K) time, where K is the number of answers.

Just as we designed an interval heap to solve both MIN and MAX queries,
we can combine the interval heap and the interval *heap to give the mmm-
interval heap for MIN, MED, and MAX queries. It has four values at each
node except, of course, for the L-node, which has between 1 and 4 values.
At a node with values a < b < ¢ < d, we require that the outer interval [a, d]
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contains all outer intervals at the nodes in its subtree and that the inner
interval [b, c] is contained in all inner intervals at the nodes in its subtree.
The mmm-interval heap can be updated in O(logn) time and it can
answer complementary, median, minimum, and maximum range queries in
©(K) time, where K is the number of answers. Also, the mmm-interval
heap can be constructed in ©(n) time using constant additional space.

5 Generalizations of Interval Heaps

In this section we will consider the d-dimensional analog of interval heaps.
As a main problem we consider the design of an implicit 2d-ended priority
queue for representing (multi-)sets V C X¢ which supports the following
operations:

1. MIN;—determine the element with the smallest i** coordinate.

2. MAX;—determine the element with the largest i*# coordinate.

3. INSERT—add a value z € X% to the subset.

4. DELETEMIN;—remove the element with the smallest i*# coordinate.
5. DELETEMAX;—remove the element with the largest it coordinate.

We will see that the resulting, implicit data structure can be used to ob-
tain an efficient solution to the d-dimensional complementary range query
problem as well. We assume d > 2.

The implicit data structure we propose for implementing 2d-ended pri-
ority queues is a natural generalization of the interval heap. What we need

is the proper generalization of an interval containing some set of points
W C X4, Assume first that | W |> 2d.

Definition 5.1 The d-interval defined by a set of points W C X9 is the
box enclosed by (that is, the intersection of) the hyperplanes H, through
Hyq4 that are defined as follows:

1. H, is the 1-hyperplane defined by a point hy € W with least 1% coor-
dinate, H; is the 1-hyperplane defined by a point hy € W — {h;} with
largest 1% coordinate.

2. Forl < i< d,Hj_, is the i-hyperplane defined by a point hy;_, € W —
{h1,...,hai_a} with least i*h coordinate, and Hy; is the i-hyperplane
defined by a point hy; € W —{hy, ..., hsi_1} with largest ith coordinate.
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(For simplicity we use the term i-hyperplane to denote any hyperplane of
points with fixed i** coordinate.) If | W |= j < 2d, then we could still
use the same definition, but only j hyperplanes would be defined and the
box would not be entirely bounded. For finite sets W C X¢ the defining
d-interval I'w (that is, the hyperplanes H; and the boundary points h;) is
easily determined in ©(d?) time. By abuse of notation we will say that W is
contained in Iy although, strictly speaking only W — {h,,...,haq} C Iw.
A d-interval is uniquely represented by the (ordered) sequence of boundary
points hy,...,h2q or by hy,...,h; in the case of an incomplete d-interval
and, therefore, denoted by [hy,...,heq] or [hy,...,hk;], Tespectively.

Definition 5.2 A d-interval heap is a heap structure that is either empty
or satisfies the following conditions (the d-heap property ):

1. For each node v different from the L-node, I(v) is a d-interval [ay, . . ., az4]
(a; € X9, for 1 <i<2d).

2. For the L-node v, I(v) is either a set of values from X% with 1 <|
I(v) |< 2d or a d-interval [ay,...,a24] (a; € X9 for 1 < i < 2d).

3. For all nodes v and w, if v is a child of w then I(v) C I(w).

The definition is to be understood as for ordinary (1-)interval heaps, cf.
Section 2. A d-interval heap represents the (multi-)set V consisting exactly
of the values of X4 that are used to delimit the boundaries of the d-intervals
and, in the case that the L-node does not hold a d-interval, the elements of
the stored set. Observe again that d-interval heaps are easily implemented
as implicit data structures. The following proposition is immediate.

Proposition 5.1 d-Interval heaps support MIN; and MAX; operations in
0(d) time.

Lemma 5.2 d-Interval heaps support INSERT operations in ©(dlogn) time.

Proof: Let I be a d-interval heap, * € X? a value to be added to I. If I
is empty or the L-node does not contain a full d-interval but coincides with
the root, then the insertion is trivially processed at the root. Consider the
non-trivial case that the L-node v does not contain a full d-interval and is
different from the root. Let w be the parent of v, and I(w) = [ay,...,azq].
If z € I(w), that is, = is contained in the box at w, then add z to I(v)
and turn I(v) into a d-interval if it now contains 2d values. This preserves
the d-heap property. If z ¢ I(w), then climb towards the root and check at
every node w that is visited whether z € I(s) for s the parent of w. (For w
equal to the root, we assume that I(s) is the infinite box X9.) Let wp be
the first node encountered on the path towards the root for which the test
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returns true. Note that wg is well-defined (the test will always be true at
the root) and that in every node the test z € I(s) can be evaluated in ©(d)
time. Let I(wo) = [ay, ..., az4], where clearly z ¢ I(wo). Now replace I(wp)
by the d-interval defined by the set {ay,...,a2q4,2}. The defining boundary
points will consist of # and all of the points a;,...,as4 apart from one, say
a;. Observe that a; € I(wo). We now use the fact that in a heap structure
one can always determine in ©(1) time in which subtree a given node is
located. Thus we can trace the path from wo back towards v (the L-node)
and find the first node wy with a; ¢ I(w;). If no such node w; exists, then
the journey ends at v and we can simply add a; to the set at v. This will
restore the d-heap property and we can stop. If w; exists, then we proceed
with a; at wy as we did with z at wy. This gives a new d-interval at w,,
and an extra point ay € I(w;). Proceed downwards and repeat the same
procedure with ay, etc., until eventually v is reached. Whatever extra point
we have, it can be added to v and we are done.

It remains to consider the case that the L-node v contains a full d-
interval. Allocate the next node u of the heap structure, and initialize I(u)
to be the empty set. Now start the insertion procedure for z at u, and
proceed exactly as before. This will restore the d-heap property, and leave
a valid d-interval heap with z inserted. Clearly the whole insertion process
takes only ©(log n) steps of cost ©(d) each, hence, ©(dlogn) total time. O

Lemma 5.8 d-Interval heaps support DELETEMIN; and DELETEMAX;
operations in ©(d?logn) time.

Proof: We only sketch the argument for DELETEMIN; operations. (DELETEMAX;
operations are handled analogously.) Let I be a d-interval heap. If the root
node happens to be the L-node of I, then the DELETEMIN; operation is
executed by simply dropping the MIN;-value from the structure (cf. the
proof of proposition 2.3). Let’s assume that the root is not the L-node of
I and that [ay,...,azq] is the d-interval at the root. Clearly MIN; is deter-
mined as one of the points a; (1 < j < 2d) with least i** coordinate. (Note
that it is not necessarily the point ay;_;, because of the way d-intervals are
determined.) Let a; = MIN;. Essentially, we now wish to delete a; and fill
its place, but this is slightly more tedious than it was in the one-dimensional
case. Let the children of the root be u and v. (If the root has only one child,
then the argument is completely similar.) We now show that the d-interval
at the root (minus a;) can be restored to be a box enclosing all other points
by borrowing precisely one point from either I(u) or I(v).

Consider the way the d-interval at the root is formed. Cleatly a,,...,a;_1
will be determined as before, but a; leaves a hole. The point with extreme
j** coordinate-value that replaces it could be a point of I(u) or I(v), but
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it could also be one of the remaining ax (j < k¥ < 2d). In the former
case, we have a suitable replacement and can complete the d-interval with
@j41,. .., 024 as we had. In the latter case, a; is replaced by some a (j < k)
and we have created a hole further down the list. Thus, replace a; by az
and continue the construction, which forces us to take aj41,...,a5-1. The
replacement for a is determined in a similar way. Eventually the hole is
filled with an element from I(u) or I(v) and the construction is complete.
Note that it is requires ©(d) steps of ©(d) work to complete the construc-
tion. The resulting d-interval indeed encloses both I(u) and I(v), that is, the
original versions of it, and, thus, is a proper d-interval at the root.

It is clear that we must now iterate the process. Say the one point
needed to restore the d-interval at the root came from I(u). Then remove
this point from I(u) and proceed as before to fill its place. Eventually, the
iteration ends at a node u belonging to the frontier of I, where we just delete
a point. If u is the L-node of I, then we can stop altogether, because I has
been restored to be a valid d-interval heap. Otherwise, remove an arbitrary
point z from the L-node and (subsequently) insert it at u by following the
procedure of Lemma 4.2. This will restore I to be a valid d-interval heap,
in ©(d%logn) total time. m|

We conclude:

Theorem 5.4 d-Interval heaps are an efficient, implicit data structure for
implementing 2d-ended priority queues which support MIN; and MAX; op-
erations in ©(d) time and the remaining operations in ©(d?logn) time.

A remaining question concerns the construction of a d-interval heap from
a set of n points in X9. A linear time construction can be given in the same
way a8 in Theorem 2.6.

Theorem 5.8 d-Interval heaps can be created in O(d3n) time.

Proof: (We only give a brief outline of the construction.) Essentially, we
follow the same algorithm as Floyd’s for constructing ordinary heaps. Be-
gin by assigning the elements in groups of 2d to the consecutive nodes of
a heap structure, level by level. Starting at the lowest level and working
upwards, again level by level, we heapify the subtrees until in the end the
entire structure has been turned into a proper d-interval heap. In a typical
step we visit a node w, whose children « and v are roots of subtrees that
were turned into proper d-interval heaps in the previous stage. Ignore the
set § of 2d points at w for the moment, and consider the points currently
at u and v. Compute the d-interval determined by these points (it will be
a box that encloses all other points in the two subtrees), and assign it to
w. Say the interval took i points from I(u) and j points from I(v). Delete
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these points from the d-interval heaps at u and v, respectively, by the tech-
nique of Lemma 4.3. It will take ©(d3 - height(w)) time, because i + j = 2d.
Finally, insert ¢ elements of S (one after the other) in the open places in
the subtree at u and likewise the remaining j elements of S in the open
places in the subtree at v, by the technique of Lemma 4.2 (in the d-interval
heap rooted at w). In a further ©(d® - height(w)) steps this will heapify the
entire structure at w. By the same analysis as for Floyd’s algorithm, it fol-
lows that the entire construction of the d-interval heap takes @(d3n) time. O

The most interesting application of d-interval heaps again seems to be in
the theory of multi-dimensional data structures. In particular, consider the
d-dimensional variant of the complementary range query problem: Given a
set V of n points in d-dimensional space and a d-interval B (an iso-oriented
box), determine the points of V' that are not contained in B. (In the ordinary
range query problem one wants to determine the points inside B.)

Theorem 5.6 There is an implicit data structure for the (dynamic) d-
dimensional complementary range query problem that requires ©(dn) time
to build and supports queries in O(d?K) time.

Proof: Organize the points of V into a d-interval heap I. Complementary
range queries can now be answered as follows, by very much the same tech-
nique as in Theorem 3.1. Let B be the query box. The query algorithm starts
at the root and proceeds recursively in the following manner, whenever a
node v is visited. Two cases can be distinguished.

Case (i): I(v) C B. In this case no point of V appearing inside I(v) and,
hence, in v’s subtrees, is reported. Thus, each of the 2d boundary
points of I(v) must be tested and possibly reported (when not con-
tained in B).

Case (ii): I(v)NB C I(v). In this case at least one side of I(v), that is, one
of the 2d bounding hyperplanes, must lie strictly outside of B. Thus,
at least one of the boundary points must be reported (namely, the
point that determines this hyperplane), but clearly the other boundary
points must be tested as well and reported if not inside B. If v is not
a leaf, the algorithm will visit the children of v next.

The query algorithm is easily implemented as a pre-order traversal of I,
only visiting the nodes where answers must be reported. Once the algo-
rithm comes to a node where it is no longer required to proceed (Case (i))
it backs up, charging the cost for the visit to the reported points (if any) or
to the parent node (where it must have done some reporting). All testing
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requires ©(d?) time per visit, and ©(d) per point reported. Thus the algo-
rithm takes at most G(d2K) time. o

Note that the implicit data structure in the proof of Theorem 4.6 is
dynamic in the following sense: insertions are supported in ©(dlogn) time,
but deletions (in a bound of ©(d%logn) time) only if the location of the
element to be deleted is known. Observe also that the query interval B does
not have to be fully d-dimensional. It follows, for example, that Theorem
4.6 holds also for complementary partial match querying.
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