Heaps in Theory

uses a graphical tree to represent un unsorted array

* the tree
o is a RBT (Regular Binary Tree)
= 5o only 2 children

o is completed from the top down, left to right (called complete)

o each node in the tree represented in the corresponding array

* cannot have duplicates

* items are added to the array in order (or make a COMPLETE tree)
* order of inputs does have an effect on the overall order of the heap

Tree Representation

Array Representation

[1]

2] Q 3]

[6] 7]

Oo"

// JUST A GRAPHICAL REPRESENTATION!!!

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[]

-1

29

85

8

93

23

88

73

44

36

// Draw the value in the elements of the tree from the array representation

Was does complete mean?

Minimum Binary Heap

* same constructions as a heap, but the minimum value of the entire tree is stored
at the root
* the further down we go in the min heap, the value increases
o parent will ALWAYS be less than or equal in value than the kids
o this is called partial ordering

The Min Heap Structure

‘ -INF’3334‘331:‘3335’3034‘33:3’3317‘033‘3‘3345’0053‘335‘3’3321‘33:3‘334?’0057‘3378’ ‘ ‘ ’ ‘ ’ ‘ ‘ ’ ‘ ’
0 1 2 3 4 5 6 7 8 9 10 1 12 12 14 15 18 17 18 12 20 21 22 23 24

Notice 4 is the smallest value so far in this heap
Anything below the parent (no matter where) is >= than the parent
Notice the max value will be SOMEWHERE near the bottom

Initial class setup - BinaryHeap
* code given uses an array
o default size is 10
o calls buildHeap() just to do that

MinBH Construct (or)

/**
* Construct the binary heap given an array of items.
*/
public BinaryHeap(AnyType [] items)
{
currentSize = items.length;
array = (AnyType[]) new Comparable[(currentSize + 2) * 11 / 10];

int 1 = 1;

for(AnyType item : items)
{ array[i++] = item; }

buildHeap();

Determining the relationships using
code/array

® Determining who is parent/child of a certain node is easy!!
O using array notation and structure!!

Remember this is using an ARRAY representation!!!

Tree Representation

[1]

5]

3]
8

[10]

// JUST A GRAPHICAL REPRESENTATION!!!

To Find Formula Example

Parent index floor((index)/2) [6]/2=3

6’s Parent is 3
Left Child index | 2(index) 2*[3]=6

3’s Left Child 1s 6
Right Child index |2(index) + 1 2*[3]+1=7

3’s Right Child is 7
9’s Parent
2’s Left Child

4’s Parent

Building and Inserting into a Min Heap

* notice I do have to specify Minimum Binary Heap
* algorithm
o place new node at END of array
= next available complete spot in BT
o at end, could be in wrong order (parent is larger!)
= continuously swap with parent going up the tree until parent < new

node
= this is called sift up or percolate up
o notice that “lighter” values do bubble up, (maybe not to the root), but are

in a higher position

Inserting into an establish Min Heap

0012|0005|0024|0020|0017(0022| 0045|0062 | 0052|0021

’ -INF ‘ 0004

5 6 7 8 9 10 11 12 12 14

0o 1 2 2 4

Where will the next value be first placed, no matter the value??

[reroofoffoomporonfon=] | 1 T 1 1] T 11 1 1 11

«INF | 0004|0012/ 0005 0024|002 O34 | 0045 0002|0058 002
0 1 2 3 4 8 - T -3 9 ° 11 12 14 15 18 17 18 198 20 21 22 23 24

o 1 2 3 4 -] -] 7 g 9 M 1 2 13 14 12 18 17 18 1 20 29 22 23 24

I will try this one: (answer on next page)

64, 12, 35, 28, 74, 24, 59

Answer to in-class example

-INF | 0012|0028| 0024|0064 (0074|0025| 0052

0 1 2 3 4 5 6 7 8 9 10 1 12 12 14 15 186 17 18 19 20 21 22 22 24

Answersy:

Insert - the function

* notice it checks the size of the array first
o adds more if not enough
* temporarily spaces our value in [0]
* <0 is not the value, but if there is a parent that is greater, then keep swapping

Array version of Insert for MinBH

/**
* Insert into the priority queue, maintaining heap order.
* Duplicates are allowed.

* x the item to insert.
*/
public void insert(AnyType x)
{

// check if size of array is enough to hold new node
if(currentSize == array.length - 1)
{ enlargeArray(array.length * 2 + 1); }

// Percolate up

int hole = ++currentSize;

for(array[@] = x; x.compareTo(array[hole / 2]) € @; hole /= 2)
{ array[hole] = array[hole / 2]; }

// now put our new value into the right place
array[hole] = x;

Why s it /= 22

Finding the minimum in a MinBH
* super easy!
* minimum value will ALWAYS be the root

o 1if everything percolated correctly
o [1] not [O]!!

Min is always at the top of a MinBH

-INF |0012|0022|0014|0081|0082|0057|0024|0028|0075|00¢E8

findMin the function

/**
* Find the smallest item in the priority queue.
* the smallest item, or throw an UnderflowException if empty.
*/
public AnyType findMin()
{
if(isEmpty())
{ throw new UnderflowException(); }
return array[1];

10

Deleting in a MinBH
¢ deletion 1s ONLY authorized for the MINIMUM value

o not ani other value

* now replaced with the NEXT lowest value
o which SHOULD be close to the top of the tree

* tree must maintain it’s shape

* but we will delete the LAST complete node in the tree since
o since now it will be empty

Deleting a node, and re-heaping

-INF [0004|0044|0012(0052|10091|0042(0087|0087| 0058|0022

0 1 2 3 4 5 6 7 8 o 10 1 2 13

Deleting Min value

| -INF 0044|0012|0052|/0021|0042| 0087|0067 | 0056|0022

11

Replacing root with LAST value in tree

-INF | 0092}0044|0012|0052|0091,/0042|0087| 0057|0058

0 1 2 3 & 5 8 7 8 e 10 11 12 13 14 15 18 17 18 19 20 21 2 23 24

Percolating Down - Comparison

-INF | 0021 D052|0092|0042|0087|0057| 0058
0 1 i 23 < 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24

O

Comparing 91 (root) with whatever child is smallest

12

0052

0g0s2

0042

0087

4

5

6

7

19

20

21

23

24

13

-INF

0012

18

i

18

19

21

23

24

A

14

Percolating Down - Swap

-INF |0012|0044|0042(0052|0021|0092|0087|0057| 0056

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Done since no more immediate nodes to compare to.

Delete the NEXT node using the result above.

After you’re done, click the link below for your answer:
http://userpages.umbc.edu/~slupoli/notes/DataStructures/videos/Heaps/Deleting%20fr
om%20a%20Heap%20-%20Exercise.html

15

Delete - the function(s)

* deleteMin() and percolateDown()
o deleteMin is the bootstrap to get things started
o percolateDown is iterative in comparing and swapping
= also called heapify

deleteMin () function

/**
* Remove the smallest item from the priority queue.
* the smallest item, or throw an UnderflowException if empty.
*/

public AnyType deleteMin()

{
if(isEmpty()) { throw new UnderflowException(); }

AnyType minItem = findMin();
array[1] = array[currentSize--];
percolateDown(1);

return minItem;

percolateDown () function

/**
* Internal method to percolate down in the heap.
* hole the index at which the percolate begins.
*/

private void percolateDown(int hole)

{
int child;
AnyType tmp = array[hole];

for(; hole * 2 <= currentSize; hole = child)

{
child = hole * 2;
if(child != currentSize &&
array[child + 1].compareTo(array[child]) < @)
child++;
if(array[child].compareTo(tmp) < ©)
{ array[hole] = array[child]; }
else { break; }
}

array[hole] = tmp;

16

}

Performance

* construction O(n)
o even if data is out of order, we place in heap with partial ordering
o still stored in a simple array!!

* findMin O(1)

* insert O(logn)

* deleteMin O(logn)

Heap Construction - the function

* lays all items into array first, no matter order in construction
o done in constructor
* then “builds the heap” (sorts, partially) in buildHeap
o notice that buildHeap uses percolateDown starting at middle of the array
o this is enough to have the real minimum value “rise” to the top of the heap
* neither of these functions are recursive

BuildHeap function

/**
* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time.
*/
private void buildHeap()
{
for(int i = currentSize / 2; i > 9; i--)
percolateDown(i);

17

Sorting a Heap - MinBH

* given a list of n values, we can build and sort in O(n log n)

o insert random values = O(n)

o heapify = O(n)

o repeatedly delete min and re-heapify O(log n) * n times

heapify

o re-ordering the values so Parent is &= it’s kids in a MinBH

delete

o retrieves the CURRENT minimum node in a MinBH
= value is saved in another array
o automatically calls percolateDown()

this looped OVER and OVER will return a sorted list of items
this means we will need another array of the same size, just to hold the cast offs

o UNLESS, we store the values casted back in the deleted code’s position
o but this will have everything backwards!!

Using a MinBH to sort

NF | 0028

002

1

£8|0041

52(005¢

00e7

18

-INF

0021

0041

0058

0oe7

0052

0058

1

21

-INF

0041

0052

0058

1

2

3

21

Sorting a Heap - MaxBH
* here we avoid the “backward” issue
* now the parent is . it’s kids
o so HIGHEST value is at the top of the heap

Max Heap Example

-\
/ \
e TV " N\
| 53) | 59 |
/ B ! /\
< /;/ N
\>®/ */ > O/

97 |53 |59 (26 |41 |58 |31

0 | 2 3 4 5 6 7 8 9 10

Deleting 97 (current Max), now heapify

/\

) 41 | (31) 97
_/ __/ _/

59 |53 |58 |26 |41 |31 ||97

o 1 2 3 4 5 6 7 8 9 10
Perform the next two deletions on the heap above

In it’s entirety

20

http://nova.umuc.edu/~jarc/idsv/lesson3.html

MinBH (using arrays) shortcomings
* sorting, wrong order
* merge
o merging two arrays, no real shortcut
O son;+tnm

Leftlst Min Heaps

uses a BT!!

* merging heaps is much easier and faster

o may use already established links to merge with a new node

= why so much faster

o because we are using Binary Trees!!
* values STILL obey a heap order (partially ordered)
* uses a null path length to maintain the structure (covered later)

o the null path of and node’s left child is >= null path of the right child
* at every node, the shortest path to a non-full node is along the rightmost path
* this overall ADT supports

o findMin = O(1)
deleteMin = O(log n)
insert = O(log n)
construct = O(n)
merge = O(Ilg n)

O O O O

Example of a Leftist Heap

1

7\

21

Null Path Length (npl)

* length of - path from current node (X) to a node without 2 children
o value is store IN the node itself

* leafs=0

* nodes with only 1 child =0

Determining the npl for a node

22

The Leftist Node

* the node will have many data members this time
o links (left and right
o element (data)
o npl
* by default, the LeftistHeap sets and empty one as the root

The leftist Node Class and Code

private LeftistNode<AnyType> root; // root

private static class LeftistNode<AnyType>
{

// Constructors
LeftistNode(AnyType theElement)
{

}

this(theElement, null, null);

LeftistNode(AnyType theElement, LeftistNode<AnyType> 1t,
LeftistNode<AnyType> rt)

{

element = theElement;

left = 1t;

right = rt;

npl = 0;
}
AnyType element; // The data in the node
LeftistNode<AnyType> left; // Left child
LeftistNode<AnyType> right; // Right child
int npl; // null path length

23

Bulldmg a Left-ist Heap

value of node STILL matters, lowest value will be root, so still a min Heap
* data entered is random
* uses CURRENT npl of a node to determine where the next node will be placed
* algorithm
o add new node to right-side of tree, in order
o if new node is to be inserted as a parent (parent > children),
= make new node parent
* link children to it
= link grandparent down to new node
o if leaf, attach to right of parent
o if no left sibling, push to left (hence left-ist)
= why?? (answer in a second)
o else left node is present, leave at right child
update all ancestors’ npls
o check each time that all nodes left npl < right npls
= if not, swap children or node where this condition exists
* this is really using heaps and links!!

©)

Building a leftist Heap

21,14, 17, 10, 3, 23, 26, 8

-~ 0
(0021)

_

inserting 14

N\

f a)
{ 0014)

_J
Ve ?\

(0021 |

_/

inserting 17

-\
}wg
' 0021 : : 0017 '

NANY

24

25

Why does 26 HAVE to be moved left?

* we can have it where a node’s left npl is greater than it’s right npl
o simply, we swap children

Swapping children to save a leftist tree

Just inserted 52 into the leftist heap

26

What’s the issue now?

Right subtree has larger Null Path Length than left subtree. Swapping ...

Try creating these leftist heaps n your own:

75, 91, 97, 9, 39, 87, 34, 8, 86, 58
24, 80, 98, 30, 77, 35, 65, 2, 48, 92, 18, 37, 67, 96
71, 4, 13, 73, 52, 20, 50, €63, 85, 23, 1, 44, 32, 53, 14, 17, 82, 76, 27, 83, 11, 81, 90, 62

Answers,:

27

Inserting - the function

* in the code, adding a single node is treated at merging a heap (just one node)
with an established heap’s root
o and work from that root as we just went over
* we will go over merging whole heaps momentarily

The Insert function

/**
* Insert into the priority queue, maintaining heap order.
* x the item to insert.
*/

public void insert(AnyType x)

{

root = merge(new LeftistNode<>(x), root);

28

Merging Left-ist Heaps
* the heaps we are about to merge must be left-ist
* at end we will get a heap that is
o a min-heap
o left-ist
* algorithm
o Start at the (sub) root, and finalize the node AND LEFT with the smallest
value
o REPEADLY, until no lists left unmerged.
= Start at the rightmost root of the sub-tree, and finalize the node
AND LEFT with the next smallest value in leftist lists.
* Add to RIGHT of finalized tree.
o Verify that it is a Min Heap!! (Parent < Children)
o Verify a leftist heap! (left npl <= right npl)
= if not, swap troubled node with sibling

I will try:

Initial Left-ist Heaps

el

Start at the root, and finalize the node AND LEFT with the smallest value

e A

| finalized

\ option 1

\ option 2

30

Start at the root of the sub-tree, and finalize the node AND LEFT with the next smallest value. Add to RIGHT of

finalized tree

finalized optionl

option2

Start at the root of the sub-tree, and finalize the node AND LEFT with the next smallest value. Add to RIGHT of
finalized tree

option 2

option 1

finalized

Start at the root of the sub-tree, and finalize the node AND LEFT with the next smallest value. Add to RIGHT of
finalized tree

Verify that it is a Min Heap!! (Parent < Children)

Yup

31

Verity a leftist heap! (left npl <= right npl)

ISSUE!!!

0

Switch problem node with sibling. (Start from root, work way to bottom). All links stay in same direction down.

32

Try these:

#1
DO THIS ONE D STOP!!! Wlll g0 over together
#2

a lot of work on
this one

(1) Al

(D

#3

I know!! Heap is a
MAX heap!! Try it
anyway! (max
first!)

=)

6

33

Merging - the function

* notice it is recursive!
* merge()
o version 1 — copy rhs to root
o version 2 - is the function to set up the order between left and right heaps
* mergel() is the function to actually do the linking and swapping if left npl >
right npl
o notice npl is a private variable

Merging Heaps

/**
* Merge rhs into the priority queue.
* rhs becomes empty. rhs must be different from this.

* rhs the other leftist heap.
*/
public void merge(LeftistHeap<AnyType> rhs)
{
if(this == rhs) // Avoid aliasing problems
return;
root = merge(root, rhs.root);
rhs.root = null;
}
/**

* Internal method to merge two roots.
* Deals with deviant cases and calls recursive mergel.
*/
private LeftistNode<AnyType> merge(LeftistNode<AnyType> hl,
LeftistNode<AnyType> h2)
{
if(hl == null)
return h2;
if(h2 == null)
return hi;
if(hl.element.compareTo(h2.element) < 0)
return mergel(hl, h2);
else
return mergel(h2, hl);

/**

34

* Internal method to merge two roots.
* Assumes trees are not empty, and hl's root contains smallest item.
*/
private LeftistNode<AnyType> mergel(LeftistNode<AnyType> hil,
LeftistNode<AnyType> h2)

{
if(hl.left == null) // Single node
hl.left = h2; // Other fields in hl already accurate
else
{
hl.right = merge(hl.right, h2);
if(hl.left.npl < hl.right.npl)
swapChildren(hl);
hl.npl = hl.right.npl + 1;
}
return hi;
}
/**
* Swaps t's two children.
*/

private static <AnyType> void swapChildren(LeftistNode<AnyType> t)

{
LeftistNode<AnyType> tmp = t.left;

t.left = t.right;
t.right = tmp;

35

So why did we do this?

* fast!
o merge with two trees of size n
= O(logn), we are not creating a totally new tree!!
= some was used as the LEFT side!
o inserting into a left-ist heap
= O(logn)
= same as before with a regular heap
o deleteMin with heap size n
= O(logn)
= remove and return root (minimum value)
= merge left and right subtrees
* real life application
O priority queue
= homogenous collection of comparable items
= smaller value means higher priority

36

Answers:

Inserting into a Heap Exercise #1

| -INF | 0004|0044/ 0012|0052(0092|0042| 0087|0067 |0058| 0022

0 1 2 3 < 5 6

8 o 10 11 12 12 14 15 16 17 18 19 20 21 22 23 24

-l

Inserting into a Heap Exercise #2

| -INF | 0012|0022 0014|0061|0082|0057|0024(0028|0075| 00¢&8

0 1 2 3 4 5 6 7 8 o 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24

37

Leftist Heap Creation Exercise #1

Leftist Heap Creation Exercise #3

38

1
0

2

o 1
0

oos2 0085

1

1 2 0

1 1 0
0 0 1 00

0

0
0082

0
OOH

Merging Left-ist Heaps #1

39

Merging Left-ist Heaps #2

H=HI1+ H2

(3)

o e
A
@ Q

@)”

41

Merging Left-ist Heaps #3

42

Sources:

In General
http://courses.cs.washington.edu/courses/cse332/13wi/lectures/cse332-13wi-lec04-
BinMinHeaps-6up.pdf

Maximum HeapSort
http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Show and Tell Heap building
http://www.cs.usfca.edu/~galles/visualization/Heap.html

Random Heapsort
http://www.cse.iitk.ac.in/users/dsrke/cs210/applets/sortingll/heapSort/heapSort.html

http://nova.umuc.edu/~jarc/idsv/lesson3.html

Building a Leftist Heap
http://www.cs.usfca.edu/~galles/visualization/LeftistHeap.html

43

