Thread Il

Slides courtesy of Dr. Nilanjan Banerjee



Race condition explained...

What is the shared object in our example?
the Bank object??

Accessing shared objects is also termed as accessing “critical sections” of
data

Lets look at a statement in the critical section.

account[to] += amount;



Race condition explained..

Lets decompose the previous statement into assembly and see what it
constitutes..

Load accounts[to] to some register
Add amount to that register
Copy back the result into the memory location

The problem is that the above three statements are not atomic (Atomic
operation is something that cannot be preempted)

Lets see what can potentially happen when two threads simultaneously
access this statement...



Race condition explained...

What has happened here?

Load X R1
AddY ZR1
Thread 1 executes the
first two statements
Store Y in Mem and is preempted...

Thread 2 executes all
the three statements

Thread 1 returns and
executes the third
statement



Intuitively how would you solve this problem...

e First solution: allow only one thread to access the “critical section” or
“shared object” at one time!!!l ©

e Easiest way of doing this is using locks...

e java.util.concurrent provides the Lock interface and ReentrantLock
implementation

Lock myLock = new ReentrantLock();
myLock.lock(); //acquire a lock..
try {

critical section.....
} catch(Exception e) {}
myLock.unlock() //give up the lock



Properties of locks...

Only one Thread can acquire a lock at one time
e Suppose one Thread acquires the lock
e Second Thread tries to acquire it
e Second Thread blocks till first Thread releases the lock

Make sure every lock is accompanied by an unlock statement
e Else things will block forever ®

Reentrant means the same Thread can acquire the lock multiple times
In our example every Bank object has a separate lock...

e For different Bank objects the locks are completely different.. They do
not collide...



Condition objects!

e Lets refine our Bank example

e Add a condition that you can transfer data only if there is sufficient
balance

Unsynchronized way of doing it

if(accounts[from] > amount) { carry out the transfer...}

Problem

If(accounts[from] > amount) {

Thread preempted...

Some other thread removes the money from the account
Thread scheduled again.. //now the operation is just WRONG!!!

}



Lets see if we can use locking to solve this

mylock.lock();

while(account[from] < amount){
Thread.sleep(100);

}
//do the transfer...
mylock.unlock();

What is the problem here?

Only one Thread can acquire the lock..
This might lead to a deadlock...



Java’s conditional variables

e Java provides Conditional variables with every Lock
e How do you use it::
Using a conditional (you can declare as many as you want)

private Lock myLock = new ReentrantLock();

public Bank() { //constructor

private Condition sufficientFunds = myLock.newCondition();}
myLock.lock();

while(accounts[from] < amount) {
sufficientFunds.await(); //

}

//Transfer funds..
sufficientFunds.signalAll();
myLock.unlock();



Lets take a closer look at the await() and signalAll()

e sufficientFunds.await()

It pulls the Thread out of the run queue and places it in a condition
qgueue (specific to that particular condition)

Releases the lock that the thread was holding

Consequently other Threads that are blocked on that lock can get the
CPU!!!

e sufficientFunds.signalAll()

Signals all the Threads that are waiting on that particular condition

Indication that condition (sufficientFunds) in our case in now
satisfied...

The Thread can be scheduled if it has the lock.



Difference between conditional wait and waiting on a lock

Run

unlock

Wait on a lock

Condition.signalAll()

Blocked on lock

Condition Queue 1

Condition.await()

11



Summary of locking and conditional

A lock protects a section of code, allowing only one thread to access the
critical section at one time

A lock manages threads that are trying to enter this “protected” code
segment

A lock can have more than one conditional objects associated with it

Each conditional object manages threads that have entered a protected
code section but cannot proceed due to a “condition”.



The synchronized keyword!

e Locks and Conditions provide you with fine-grained synchronization

e However there is an easier way of synchronizing object if you are
ready to sacrifice some of the flexibility

e The Java language provides a keyword “synchronized” that can be used to
make a method thread-safe

e Every Java object has an intrinsic lock
e (Calling a method synchronized uses that intrinsic lock

e Lets take an example

//In Bank.java
public synchronized void transfer() {
... method body....

}.



Take a close look at the synchronized method

public synchronized void transfer() {
....method body.....

}

Equivalent to the following

public void transfer() {
this.intrinsicLock.lock(); // acquire the intrinsic lock

....method body.....
this.intrinsicLock.unlock() //release the instrinsic lock

}



Conditionals for the intrinsic lock

Every intrinsic lock is associated with only ONE intrinsic conditional

public synchronized void transfer() {
while (accounts[from] < amount) wait();
accounts[from] -= amount;

accounts[to] += amount;

notifyAll();

}

Equivalent to the following

public void transfer() {

this.intrinsicLock.lock(); // acquire the intrinsic lock
While(accounts[from] < amount) this.intrinsicLock.getCondition().await();
.. Do stuff...

This.intrinsicLock.getCondition().signalAll()

this.intrinsicLock.unlock() //release the instrinsic lock

}



Limitations of using synchronized...

One lock for the entire object

One conditional that you can use...

Pros: very clean code.. Just need to append the method name with the
synchronized keyword



Concept of a monitor

One big problem with locks is it is not a very object-oriented concept

For years developers of thought of providing synchronization without
explicit locks

That is where the concept of a monitor comes into being

Monitor is a class that has only private elements

Every object has an implicit lock that is acquired when the a method
is called and released when the method exits

Obj.method() — first acquire the lock and on returning release the
lock

You can have as many conditionals as possible

How does Java’s synchronization mechanism differ from monitors?



Use of volatile

In some cases using locks might be too expensive

public synchronized boolean isDone() { return done;}
public synchronized void setDone() { done = true;}
private boolean done;

public boolean isDone() { return done;}
public void setDone() { done = true;}
private volatile boolean done;



There are some concurrent classes

e Java.util.concurrent.*
e ConcurrentHashMap
e ConcurrentSkipList
e ConcurrentSkipListSet



Deadlock situation

e We have already seen one condition where threads might just be
deadlocked due to use of locking and using await().

e Another situation due to multiple locks.

Thread 1 Thread 2
Lock1.lock() Lock2.lock()
Lock2.lock() Lock1.lock()
....do something... ....do something...
Lock2.unlock() Lock1.unlock()

Lock1.unlock() Lock2.unlock()



