CMSC 341

Graphs

Basic Graph Detinitions

A graph G = (V,E) consists of a finite set of
vertices, V, and a finite set of edges, E.
Each edge is a pair (v,w) where v, w € V.

o V and E are sets, so each vertex ve V is
unique, and each edge e € E is unique.

0 Edges are sometimes called arcs or lines.

o Vertices are sometimes called nodes or
points.

UMBC CMSC 341 Graphs

Graph Applications

Graphs can be used to model a wide range
of applications including

Intersections and streets within a city

Roads/trains/airline routes connecting cities/
countries

Computer networks
Electronic circuits

UMBC CMSC 341 Graphs

Basic Graph Detinitions (2)

A directed graph is a graph in which the
edges are ordered pairs.

That is, (u,v) = (v,u), u,ve V.

Directed graphs are sometimes called
digraphs.

An undirected graph is a graph in which the
edges are unordered pairs.

That is, (u,v) = (v,u).

A sparse graph is one with “few” edges.
Thatis |[E| = O(|V])

A dense graph is one with “many” edges.
Thatis |E| = O(|V|?)

UMBC CMSC 341 Graphs

Undirected Graph

3) 4
All edges are two-way. Edges are unordered
pairs.

V={1,2,3, 4,5
E={(1,2),(2,3),(3,4),(2,4), (4,5), (5, 1) }

UMBC CMSC 341 Graphs

Directed Graph

AN

(3 4
All edges are “one-way” as indicated by the arrows.
Edges are ordered pairs.

V={1,2 3, 4,5
E={(1,2),(2,4),(3,2),43),4)5),(5,4),5,1)}

UMBC CMSC 341 Graphs 6

A Single Graph with Multiple

Components

UMBC CMSC 341 Graphs

Basic Graph Detinitions (3)

Vertex w is adjacent to vertex v if and only if (v, w)
cE.

For undirected graphs, with edge (v, w), and hence
also (w, v), w is adjacent to v and v is adjacent to
W.

An edge may also have:
o weight or cost -- an associated value
o label -- a unigue name

The degree of a vertex, v, is the number of
vertices adjacent to v. Degree is also called
valence.

UMBC CMSC 341 Graphs

Basic Graph Detinitions (4)

For directed graphs vertex w is adjacent to vertex v if
and only if (v, w) € E.

Indegree of a vertex w is the number of edges (v,w).
OutDegree of a vertex w is the number of edges(w,v).

®\

Paths in Graphs

A path in a graph is a sequence of vertices w,, w,, ws, ..., W
such that (w;,, w,,;) EE for 1 <i<n.

The length of a path in a graph is the number of edges on the
path. The length of the path from a vertex to itself is O.

A simple path is a path such that all vertices are distinct, except
that the first and last may be the same.

A cycle in a graph is a path w,, w,, ws, ..., W, , W € V such that:
o there are at least two vertices on the path

o w; =w, (the path starts and ends on the same vertex)

o if any part of the path contains the subpath w;, w;, w;, then each of
the edges in the subpath is distinct (i. e., no backtracking along the
same edge)

A simple cycle is one in which the path is simple.

A directed graph with no cycles is called a directed acyclic
graph, often abbreviated as DAG

n

UMBC CMSC 341 Graphs 10

Paths in Graphs (2)

How many simple paths from 1 to 4 and what
are their lengths?

Connectedness in Graphs

An undirected graph is connected if there is a path from
every vertex to every other vertex.

A directed graph is strongly connected if there is a path
from every vertex to every other vertex.

A directed graph is weakly connected if there would be
a path from every vertex to every other vertex,
disregarding the direction of the edges.

A complete graph is one in which there is an edge
between every pair of vertices.

A connected component of a graph is any maximal
connected subgraph. Connected components are
sometimes simply called components.

UMBC CMSC 341 Graphs 12

Disjoint Sets and Graphs

Disjoint sets can be used to determine connected
components of an undirected graph.

For each edge, place its two vertices (u and v) in the
same set -- i.e. union(u, v)

When all edges have been examined, the forest of sets
will represent the connected components.

Two vertices, X, y, are connected if and only if
find(x) =find(y)

UMBC CMSC 341 Graphs

13

Undirected Graph/Disjoint Set Example

2 ®
©) 4 (9)
Sets representing connected components
{1,2,3,4,5}
{6}

{7,8,9}

UMBC CMSC 341 Graphs

14

DiGraph / Strongly Connected

Components

A Graph ADT

Has some data elements
o Vertices and Edges

Has some operations

o getDegree(u) -- Returns the degree of vertex u
(outdegree of vertex u in directed graph)

o getAdjacent(u) -- Returns a list of the vertices
adjacent to vertex u (list of vertices that u points
to for a directed graph)

0 isAdjacentTo(u, v) -- Returns TRUE if vertex v is
adjacent to vertex u, FALSE otherwise.

Has some associated algorithms to be

discussed.

UMBC CMSC 341 Graphs

16

Adjacency Matrix Implementation

Uses array of size |V| x |V| where each entry (i ,j) is
boolean

o TRUE if there is an edge from vertex i to vertex |

o FALSE otherwise

o store weights when edges are weighted

Very simple, but large space requirement = O(|V/|?)
Appropriate if the graph is dense.

Otherwise, most of the entries in the table are FALSE.

For example, if a graph is used to represent a street
map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|
< 4*|V|. If there are 3000 intersections, the table has
9,000,000 entries of which only 12,000 are TRUE.

UMBC CMSC 341 Graphs 17

Undirected Graph / Adjacency Matrix

N L W iN -

UMBC CMSC 341 Graphs

18

Directed Graph / Adjacency Matrix

12345
@\ 101000
@/ 200010
301000

400101

3 4 51001 0

UMBC CMSC 341 Graphs

Weighted, Directed Graph / Adjacency

Matrix
: @\ 12345

: 5y 102000
6 5 200060

7 2 307000
(&) 400302
580050

Adjacency Matrix Performance

Storage requirement:
O([V[*)
Performance:

getDegree (u)

isAdjacentTo(u, v)

getAdjacent(u)

UMBC CMSC 341 Graphs

Adjacency List Implementation

If the graph is sparse, then keeping a list of adjacent
vertices for each vertex saves space. Adjacency
Lists are the commonly used representation. The
lists may be stored in a data structure or in the Vertex
object itself.

o Vector of lists: A vector of lists of vertices. The i-
th element of the vector is a list, L; of the vertices
adjacent to v,.

If the graph is sparse, then the space requirement is
O(|E| + |V]), “linear in the size of the graph”

If the graph is dense, then the space requirement is
O([V[*)

UMBC CMSC 341 Graphs

22

Vector of Lists

2 2 L —2

2| 4]

o 5 3 —1 D |

6 4 13

7 . 50 1
(3> 4)*

UMBC CMSC 341 Graphs

23

Adjacency List Performance

Storage requirement:
Performance:

getDegree(u)

isAdjacentTo(u, v)

getAdjacent(u)

UMBC CMSC 341 Graphs

24

Graph Traversals

Like trees, graphs can be traversed breadth-
first or depth-first.

o Use stack (or recursion) for depth-first traversal

o Use queue for breadth-first traversal

Unlike trees, we need to specifically guard
against repeating a path from a cycle. Mark
each vertex as “visited” when we encounter it
and do not consider visited vertices more
than once.

UMBC CMSC 341 Graphs 25

Breadth-First Traversal

void bfs ()
{

Queue<Vertex> gy
Vertex u, w;

for all v in V, d[v] = ® // mark each vertex unvisited
q.enqueue (startvertex) ; // start with any vertex
d[startvertex] = 0; // mark visited
while (!g.isEmpty ()) {
u = g.dequeue();
for each Vertex w adjacent to u {
if (d[w] == o) { // w not marked as visited
d[w] = d[ul+l; // mark visited
path[w] = u; // where we came from

g.enqueue (w) ;

UMBC CMSC 341 Graphs

‘ Breadth-First Example

Vl@ @V3

()
o

BFS Traversal
V4@ vi v2 v3 v4

q

u.

UMBC CMSC 341 Graphs

27

Unweighted Shortest Path Problem

Unweighted shortest-path problem: Given as input
an unweighted graph, G=(V, E), and a
distinguished starting vertex, s, find the shortest
unweighted path from s to every other vertex in G.

After running BFS algorithm with s as starting vertex,
the length of the shortest path length from s toiis
given by d[i]. If d[i] = « , then there is no path from s
to i. The path from s to i is given by traversing path]
backwards from i back to s.

UMBC CMSC 341 Graphs 28

Recursive Depth First Traversal

void dfs () {
for (each v &€ V)
dfs (v)

volid dfs (Vertex v)
{
if (!'v.visited)
{
v.visited = true;
for each Vertex w adjacent to v
if (!'w.visited)
dfs (w)

UMBC CMSC 341 Graphs 29

DFS with explicit stack

void dfs ()

{

Stack<Vertex> s;
Vertex u, w;

s.push (startvertex) ;

startvertex.visited = true;
while (!s.isEmpty ()) {
u = s.pop();

for each Vertex w adjacent
if (!w.visited) {
w.visited =

s.push (w) ;

to u {

true;

UMBC CMSC 341 Graphs

30

'DFS Example

DFS Traversal

v3

Oes

vli v3 v2 V4

UMBC CMSC 341 Graphs

31

Traversal Performance

What is the performance of DF and BF
traversal?

Each vertex appears in the stack or queue
exactly once in the worst case. Therefore,
the traversals are at least O(|V]).
However, at each vertex, we must find the
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the
performance of the getAdjacent
operation.

UMBC CMSC 341 Graphs 32

GetAdjacent

Method 1: Look at every vertex (except u), asking
“are you adjacent to u?”

List<Vertex> L;
for each Vertex v except u
if (v.isAdjacentTo (u))
L.add(v);

Assuming O(1) performance for add and
isAdjacentTo, then getAdjacent has O(|V|)
performance and traversal performance is O(|V?|).

UMBC CMSC 341 Graphs 33

GetAdjacent (2)

Method 2: Look only at the edges which impinge on
u. Therefore, at each vertex, the number of vertices
to be looked at is D(u), the degree of the vertex

This approach is O(D(u)). The traversal

performance is
7|

0, D(v)= O ([E|)

1

since getAdjacent is done O(|V]) times.

However, in a disconnected graph, we must still look
at every vertex, so the performance is O(|V| + |E|).

UMBC CMSC 341 Graphs 34

Number ot Edges

Theorem: The number of edges in an undirected
graph G = (V,E) is O(|V|?)

Proof: Suppose G is fully connected. Let p = |V].
Then we have the following situation:

vertex connected to
1 2,345,...,p
2 1,3,4,5,...,p
o) 1,2,3,4,...,p-1

o There are p * (p-1)/ 2 = O(|V|?) edges.
So O(|EJ) = O(|V[?).

UMBC CMSC 341 Graphs

35

Weighted Shortest Path Problem

Single-source shortest-path problem:
Given as input a weighted graph, G=(V, E), and a
distinguished starting vertex, s, find the shortest
weighted path from s to every other vertex in G.
Use Dijkstra’s algorithm

— Keep tentative distance for each vertex giving
shortest path length using vertices visited so far.

— Record vertex visited before this vertex (to allow
printing of path).
— At each step choose the vertex with smallest

distance among the unvisited vertices (greedy
algorithm).

UMBC CMSC 341 Graphs 36

Dijkstra’s Algorithm

The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex

{

public List adj; //Adjacency list

public boolean known;

public DisType dist; //DistType is probably int
public Vertex path;

//Other fields and methods as needed

UMBC CMSC 341 Graphs

37

Dijkstra’s Algorithm

vold dijksra (Vertex start)
{
for each Vertex v in V {
v.dist = Integer.MAX VALUE;
v.known = false;
v.path = null;

start.distance = 0;

while there are unknown vertices {
v = unknown vertex with smallest distance
v.known = true;
for each Vertex w adjacent to v
if (!w.known)

1if (v.dist + weight (v, w)< w.distance) {
decrease (w.dist to v.dist+weight (v,

w.path = v;

UMBC CMSC 341 Graphs

38

w))

Diyjkstra Example

UMBC CMSC 341 Graphs

39

Correctness of Dikstra’s Algorithm

The algorithm is correct because of a property of
shortest paths:

If Py = vy, vy, ..., V;, Vy, IS @ shortest path from v, to v,
then P, = vy, v,, ..., v;, must be a shortest path from v, to
v;. Otherwise P, would not be as short as possible since
P, extends P, by just one edge (from v; to v,)

Also, P; must be shorter than P, (assuming that all
edges have positive weights). So the algorithm must
have found P, on an earlier iteration than when it found
P,

I.e. Shortest paths can be found by extending earlier

known shortest paths by single edges, which is what the
algorithm does.

UMBC CMSC 341 Graphs 40

Running Time ot Dykstra’s Algorithm

The running time depends on how the vertices are manipulated.
The main ‘while’ loop runs O(|V|) times (once per vertex)

Finding the “unknown vertex with smallest distance” (inside the while
loop) can be a simple linear scan of the vertices and so is also O(|
V|). With this method the total running time is O (|[V|?). This is
acceptable (and perhaps optimal) if the graph is dense

(|E| = O (JV|?)) since it runs in linear time on the number of edges.

If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(Ig [V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(Ig|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is

O(|E[lg|V] + [VIig|V]) = O((|VI+|E]) Ig|V]) = O([E]| Ig|V]) if all vertices
are reachable from the starting vertex

UMBC CMSC 341 Graphs 41

Dijkstra and Negative Edges

Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

Suppose a vertex, u, is marked as “known”. This means

that the shortest path from the starting vertex, s, to u has
been found.

However, it's possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

UMBC CMSC 341 Graphs 42

Directed Acyclic Graphs

A directed acyclic graph is a directed graph
with no cycles.

A strict partial order R on a set S is a binary
relation such that
o for all acS, aRa is false (irreflexive property)

o for all a,b,c €S, if aRb and bRc then aRc is true
(transitive property)

To represent a partial order with a DAG:
o represent each member of S as a vertex

o for each pair of vertices (a,b), insert an edge from
ato b if and only if aRb

UMBC CMSC 341 Graphs 43

More Definitions

Vertex i is a predecessor of vertex j if and only if there is
a path fromitoj.

Vertex i is an immediate predecessor of vertex j if and
only if (i,) is an edge in the graph.

Vertex j is a successor of vertex i if and only if there is a
path from i toj.

Vertex | is an immediate successor of vertex i if and
only if (i,]) is an edge in the graph.

The indegree of a vertex, v, is the number of edges (u,
v), i.e.the number of edges that come “into” v.

UMBC CMSC 341 Graphs 44

Topological Ordering

A topological ordering of the vertices of a
DAG G = (V,E) is a linear ordering such that,
for vertices i,] €V, if i is a predecessor of |,
then | precedes j in the linear order,

.e. if there is a path from v; to v;, then v,
comes before v; in the linear order

O—O—0—0 | |Q0_0-O

UMBC CMSC 341 Graphs 45

Topological Sort

void topsort() throws CycleFoundException
{
Queue<Vertex> q = new Queue<Vertex>();
int counter = 0;

for each Vertex v
if(v.indegree == 0)

g.enqueue(v);

while(!q.isEmpty())

{
Vertex v = q.dequeue();
v.topNum = ++counter; // Assign next number
for each Vertex w adjacent to v
if(--w.indegree == 0)
g.enqueue(w);
}

if(counter != NUM_VERTICES)
throw new CycleFoundException();

UMBC CMSC 341 Graphs

46

TopSort Example

UMBC CMSC 341 Graphs

47

Running Time of TopSort

At most, each vertex is enqueued just once, so
there are O(|V|) constant time queue
operations.

The body of the for loop is executed at most
once per edges = O(|E|)

The initialization is proportional to the size of the

graph if adjacency lists are used and so is
O(E| + V])

The total running time is therefore O (|[E| + |V])

UMBC CMSC 341 Graphs 48

