CMSC 341

Hashing

Readings: Chapter 5

Announcements

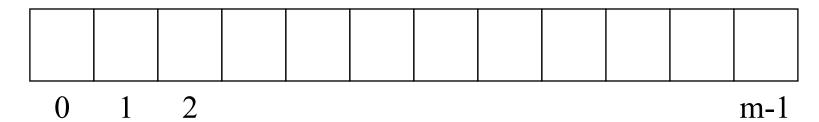
- Midterm II on Nov 7
- Review out Oct 29
- HW 5 due Thursday

- Project due Nov 5
- Midterm II review posted on Tuesday

Motivations

- We have lots of data to store.
- We desire efficient O(1) performance for insertion, deletion and searching.
- Too much (wasted) memory is required if we use an array indexed by the data's key.
- The solution is a "hash table".

Hash Table



Basic Idea

- The hash table is an array of size 'm'
- □ The storage index for an item determined by a hash function h(k): U → {0, 1, ..., m-1}

Exercise: A Simple Example

```
Example: insert 89, 18, 49, 58, 69 to a table size of 10.
Hash function: h( k ) = k mod m where m is the table size.
Public static int hash(String key, int tableSize)
{
   hashVal %= tableSize;

   return hasVal;
}
What is the problem here? How to resolve it?
Hints:
(1) How should we choose m?
(2) How to pick a hashing function?
```

Getting a better hash function; make a table (instead we make a linked list); pick a better table size (prime number)

Hashing function: F(i) = i

Example: $h'(k) = k \mod 10$ in a table of size 10 (not prime, but easy to calculate)

$$U={89,18,49,58,69}$$

 $f(I) = I$

- 1. 89 hashes to 9
- 2. 18 hashes to 8
- 3. 49 hashes to 9, collides with 89

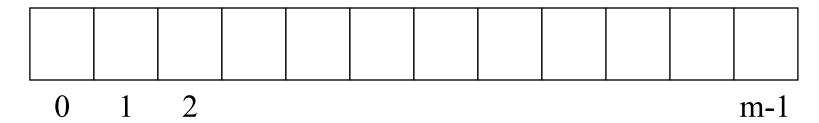
$$h(k,1) = (49\%10+1)\%10=0$$

4. 58 hashes to 8, collides with 18

5. 69 hashes to 9, collides with 89

$$h(69,1) = (h'(69)+f(1)) \mod 10 = 0$$
, collides with 49
 $h(69,2) = (h'(69+f(2)) \mod 10 = 0$, collides with 58
 $h(69,3) = (h'(69)+f(3)) \mod 10 = 2$

Hash Table



Basic Idea

- □ The hash table is an array of size 'm'
- □ The storage index for an item determined by a hash function h(k): U → {0, 1, ..., m-1}

Desired Properties of h(k)

- easy to compute
- uniform distribution of keys over {0, 1, ..., m-1}
 - when $h(k_1) = h(k_2)$ for $k_1, k_2 \in U$, we have a *collision*

Division Method

The hash function:

 $h(k) = k \mod m$ where m is the table size.

- m must be chosen to spread keys evenly.
 - □ Poor choice: m = a power of 10
 - □ Poor choice: m = 2^b, b> 1
- A good choice of m is a prime number.
- Table should be no more than 80% full.
 - Choose m as smallest prime number greater than m_{min}, where
 - m_{min} = (expected number of entries)/0.8

Handle Non-integer Keys

In order to have a non-integer key, must first convert to a positive integer:

h(k) = g(f(k)) with f: U
$$\rightarrow$$
 integer
g: I \rightarrow {0 .. m-1}

- Suppose the keys are strings.
- How can we convert a string (or characters) into an integer value?

Horner's Rule

```
static int hash (String key, int tableSize)
 int hashVal = 0;
 for (int i = 0; i < \text{key.length}(); i++)
     hashVal = 37 * hashVal + key.charAt(i);
 hashVal %= tableSize;
  if(hashVal < 0)
     hashVal += tableSize;
 return hashVal;
```

Exercise: Hash Function

```
Which hashFunction is better, when tableSize =10.007?
                                                                 97 61 141 4#97;
Method 1:
                                                                 98 62 142 4#98;
Public static int hash(String key, int tableSize)
                                                                100 64 144 d d
                                                                101 65 145 e e
                                                               102 66 146 f f
 int hashVal =0;
                                                               103 67 147 @#103; g
 for(int i=0; i<key.length(); i++)
                                                               104 68 150 @#104; h
                                                               105 69 151 i i
  hashVal += key.charAt (i);
                                                               106 6A 152 @#106; j
 return hashVal % tableSize
                                                               107 6B 153 k k
                                                               |108 6C 154 l <mark>1</mark>
} // not good: waste a lot of memory
                                                               |109 6D 155 m 🎞
Method 2: Assuming three letters
                                                               110 6E 156 n n
                                                               |111 6F 157 @#111; º
Public static int hash(String key, int tableSize)
                                                               112 70 160 p p
{ return (key.charAt(0)+27*key.charAt(1)+27^2*key.charAt(2)) %
                                                                113 71 161 q q
                                                                114 72 162 @#114; <u>r</u>
   tableSize; }
                                                               115 73 163 @#115; 3
Method 3:
                                                               116 74 164 t t
                                                               |117 75 165 @#117; <mark>u</mark>
Public static int hash(String key, int
                                                               |118 76 166 &#l18; V
   tableSize)
                                                               |119 77 167 &#l19; W
                                                               120 78 170 x ×
                                                               121 79 171 @#121; Y
 int hashVal = 0;
                                                               122 7A 172 @#122; Z
                                                               123 7B 173 @#123; {
 for(int i=0; i<key.length(); i++)
                                                               124 7C 174 |
  hashVal = 37*hashVal + key.charAt(i);
                                                               |125 7D 175 }}
                                                               126 7E 176 ~ ~
 hashVal %= tableSize:
                                                               127 7F 177  DEL
```

if(hashVal < 0) hashVal += tableSize;

HashTable Class

```
public class SeparateChainingHashTable<AnyType>
    public SeparateChainingHashTable() { /* Later */}
    public SeparateChainingHashTable(int size){/*Later*/}
    public void insert( AnyType x ) { /*Later*/ }
    public void remove( AnyType x ) { /*Later*/}
    public boolean contains( AnyType x ) { /*Later */ }
    public void makeEmpty() { /* Later */ }
    private static final int DEFAULT TABLE SIZE = 101;
    private List<AnyType> [ ] theLists;
    private int currentSize;
    private void rehash() { /* Later */ }
    private int myhash( AnyType x ) { /* Later */ }
    private static int nextPrime( int n ) { /* Later */ }
    private static boolean isPrime( int n ) { /* Later */ }
```

HashTable Ops

- boolean contains(AnyType x)
 - Returns true if x is present in the table.
- void insert (AnyType x)
 - If x already in table, do nothing.
 - Otherwise, insert it, using the appropriate hash function.
- void remove (AnyType x)
 - Remove the instance of x, if x is present.
 - Otherwise, does nothing
- void makeEmpty()

Hash Methods

```
private int myhash( AnyType x )
       int hashVal = x.hashCode();
       hashVal %= theLists.length;
       if(hashVal < 0)
           hashVal += theLists.length;
       return hashVal;
```

Handling Collisions

- Collisions are inevitable. How to handle them?
- Separate chaining hash tables
 - Store colliding items in a list.
 - If m is large enough, list lengths are small.
- Insertion of key k
 - hash(k) to find the proper list.
 - If k is in that list, do nothing, else insert k on that list.
- Asymptotic performance
 - If always inserted at head of list, and no duplicates, insert = O(1) for best, worst and average cases

Hash Class for Separate Chaining

 To implement separate chaining, the private data of the hash table is an array of Lists.
 The hash functions are written using List functions

```
private List<AnyType> [ ] theLists;
```

Performance of contains()

contains

- Hash k to find the proper list.
- Call contains() on that list which returns a boolean.

Performance

- best: selected list is empty or key is first -> O(1)
- worst: let N be the number of elements in the hash table. All N elements are in one list (all have the same hash value) and key not there -> O(N)
- Average: suppose there are M buckets and N elements in the table. Then expected list length = N/M -> O (N/M) = O(N) if M is small. = O(1) if M is large.
 - Here $\lambda = N/M$ is called the load factor of the table. It is important to keep the load factor from getting too large. If N<= M, λ <=1 and O(N/M)-> O(1) where N/M is constant

Performance of remove()

- Remove k from table
 - Hash k to find proper list.
 - Remove k from list.
- Performance
 - Best: K is the 1st element on list, or list is empty:
 O(1)
 - Worst: all elements on one list: O(n)
 - □ Average: O(N/M)-> O(1) for λ <=1. So what is the big deal? Performance for hash table and list are the same best and worst... But average performance for a well-designed hash table is much better: O(1).

Handling Collisions Revisited

Probing hash tables

- All elements stored in the table itself (so table should be large. Rule of thumb: m >= 2N)
- Upon collision, item is hashed to a new (open) slot.

Hash function

```
    h: U x {0,1,2,....} → {0,1,...,m-1}
    h(k,i) = (h'(k) + f(i)) mod m
    for some h': U → {0,1,..., m-1}
    and some f(i) such that f(0) = 0
```

Each attempt to find an open slot (i.e. calculating h(k, i)) is called a probe

HashEntry Class for Probing Hash Tables

In this case, the hash table is just an array

```
private static class HashEntry<AnyType>{
   public AnyType element; // the element
  public boolean isActive; // false if deleted
   public HashEntry( AnyType e )
   { this(e, true); }
   public HashEntry( AnyType e, boolean active )
   { element = e; isActive = active; }
// The array of elements
private HashEntry<AnyType> [ ] array;
// The number of occupied cells
private int currentSize;
```

Linear Probing

Use a linear function for f(i)

$$f(i) = c * i$$

Example:

 $h'(k) = k \mod 10$ in a table of size 10, f(i) = iSo that

$$h(k, i) = (k \mod 10 + i) \mod 10$$

Insert the values U={89,18,49,58,69} into the hash table

Linear Probing (cont.)

- Problem: Clustering
 - When the table starts to fill up, performance → O(N)
- Asymptotic Performance
 - Insertion and unsuccessful find, average
 - λ is the "load factor" what fraction of the table is used
 - Number of probes $\approx (\frac{1}{2})(1+1/(1-\lambda)^2)$
 - if λ ≅ 1, the denominator goes to zero and the number of probes goes to infinity

Linear Probing (cont.)

Remove

- Can't just use the hash function(s) to find the object and remove it, because objects that were inserted after X were hashed based on X's presence.
- Can just mark the cell as deleted so it won't be found anymore.
 - Other elements still in right cells
 - Table can fill with lots of deleted junk

Quadratic Probing

Use a quadratic function for f(i)

$$f(i) = c_2i^2 + c_1i + c_0$$

The simplest quadratic function is $f(i) = i^2$

Example:

Let
$$f(i) = i^2$$
 and $m = 10$

Let
$$h'(k) = k \mod 10$$

So that

$$h(k, i) = (k \mod 10 + i^2) \mod 10$$

Insert the value U={89, 18, 49, 58, 69} into an initially empty hash table

Quadratic Probing (cont.)

- Advantage:
 - Reduced clustering problem
- Disadvantages:
 - Reduced number of sequences
 - No guarantee that empty slot will be found if λ ≥ 0.5, even if m is prime
 - □ If m is not prime, may not find an empty slot even if $\lambda < 0.5$

Double Hashing

Let f(i) use another hash function

$$f(i) = i * h_2(k)$$

Then h(k, I) = (h'(k) + * $h_2(k)$) mod m And probes are performed at distances of $h_2(k)$, 2 * $h_2(k)$, 3 * $h_2(k)$, 4 * $h_2(k)$, etc

- Choosing h₂(k)
 - Don't allow h₂(k) = 0 for any k.
 - A good choice:
 h₂(k) = R (k mod R) with R a prime smaller than m
- Characteristics
 - No clustering problem
 - Requires a second hash function

Rehashing

- If the table gets too full, the running time of the basic operations starts to degrade.
- For hash tables with separate chaining, "too full" means more than one element per list (on average)
- For probing hash tables, "too full" is determined as an arbitrary value of the load factor.
- To rehash, make a copy of the hash table, double the table size, and insert all elements (from the copy) of the old table into the new table
- Rehashing is expensive, but occurs very infrequently.

Multiplication Method

The hash function:

h(k) =
$$\lfloor m(kA - \lfloor kA \rfloor) \rfloor$$

where A is some real positive constant.

- A very good choice of A is the inverse of the "golden ratio."
- Given two positive numbers x and y, the ratio x/y is the "golden ratio" if $\phi = x/y = (x+y)/x$
- The golden ratio:

$$x^{2} - xy - y^{2} = 0 \implies \phi^{2} - \phi - 1 = 0$$

 $\phi = (1 + \text{sqrt}(5))/2 = 1.618033989...$
 $\sim = \text{Fib}_{i}/\text{Fib}_{i-1}$

Multiplication Method (cont.)

- Because of the relationship of the golden ratio to Fibonacci numbers, this particular value of A in the multiplication method is called "Fibonacci hashing."
- Some values of

```
h(k) = \lfloor m(k \phi^{-1} - \lfloor k \phi^{-1} \rfloor) \rfloor

= 0 for k = 0

= 0.618m for k = 1 (\phi^{-1} = 1/1.618... = 0.618...)

= 0.236m for k = 2

= 0.854m for k = 3

= 0.472m for k = 4

= 0.090m for k = 5

= 0.708m for k = 6

= 0.326m for k = 7

= ...

= 0.777m for k = 32
```

Fibonacci Hashing

