CMSC 341

Hashing
Readings: Chapter 5

Announcements

Midterm |l on Nov 7
Review out Oct 29
HW 5 due Thursday

CMSC 341 Hashing

Project due Nov 5
Midterm Il review posted on Tuesday

CMSC 341 Hashing

Motivations

We have lots of data to store.

We desire efficient — O(1) — performance for
iInsertion, deletion and searching.

Too much (wasted) memory is required if we
use an array indexed by the data’s key.

The solution is a “hash table”.

CMSC 341 Hashing 4

Hash Table

0O 1 2 m-1

Basic |dea
o The hash table is an array of size ‘'m’

o The storage index for an item determined by a hash
function h(k): U—={0,1, ..., m-1}

CMSC 341 Hashing 5

Exercise: A Simple Example

Example: insert 89, 18, 49, 58, 69 to a table size of 10.
Hash function: h(k) = k mod m where m is the table size.

Public static int hash(String key, int tableSize)

{
hashVal %= tableSize;

return hasVal;
}

What is the problem here? How to resolve it?
Hints:

(1) How should we choose m?

(2) How to pick a hashing function?

Getting a better hash function; make a table (instead we make a
linked list); pick a better table size (prime number)

CMSC 341 Hashing

Hashing function: F(1) =1

Example: h’(k) =k mod 10 in a table of size 10 (not

prime, but easy to calculate)
U={89,18,49,58,69}
(=1

1. 89 hashes to 9

2. 18 hashes to 8

3. 49 hashes to 9, collides with 89
h(k,1) =(49%10+1)%10=0

4. 58 hashes to 8, collides with 18
h(k,1)=(58 % 10+ 1) % 10=9, collides with 89
h(k,2)=(58 % 10+2)%10=0, collides with 49
h(k,3)=(58 % 10+3)%10=1

5. 69 hashes to 9, collides with 89
h(69,1) = (h’(69)+1f(1))mod 10 = 0, collides with 49
h(69,2) = (h’(69+1(2))mod 10 =0, collides with 58
h(69,3) = (h’(69)+f(3))mod 10 =2

CMSC 341 Hashing

Hash Table

0O 1 2 m-1

Desired Properties of h(k)
o easy to compute

o uniform distribution of keys over {0, 1, ..., m-1}
when h(k,) = h(k,) for k4, k, € U , we have a collision

CMSC 341 Hashing

Division Method

The hash function:
h(k) = k mod m where m is the table size.

m must be chosen to spread keys evenly.
o Poor choice: m = a power of 10

o Poor choice: m = 2P, b> 1

A good choice of m is a prime number.

Table should be no more than 80% full.

o Choose m as smallest prime number greater than
m...., where
m_.. = (expected number of entries)/0.8

CMSC 341 Hashing

Handle Non-integer Keys

In order to have a non-integer key, must first
convert to a positive integer:

h(k)=g(f(k))with f. U— integer
g: 1 —{0..m-1}
Suppose the keys are strings.

How can we convert a string (or characters)
iInto an integer value?

CMSC 341 Hashing 10

Horner’s Rule

static i1nt hash(String key,

int tableSize)
{

int hashVvVal = 0;

for (int 1 = 0;

1 < key.length(); 1++)
hashVal =

37 * hashVal + key.charAt(1i);

hashVal %= tableSize;
1f (hashVal < 0)

hashVal += tableSize;

return hashVal;

CMSC 341 Hashing 11

Exercise: Hash Function

Which hashFunction is better, when tableSize =10,0077?

! 97 61 141 a a

Method 1: 98 62 142 «#98; b
Public static int hash(String key, int tableSize) 99 63 143 «#99; C
100 64 144 d d

{ 101 65 145 &#l01; e
int hashVal =0; 102 66 146 &«#102; £
o . . 103 67 147 g ¢
for(int i=0; i<key.length(); i++) 104 68 150 h h
hashVal += key.charAt (i); 105 69 151 i 1

, 106 64 152 j]

return hashVal % tableSize 107 6B 153 «#l07; k
} // not good: waste a lot of memory 108 6C 154 l 1
109 6D 155 m m

Method 2: Assuming three letters 110 6E 156 n n

Public static int hash(String key, int tableSize) ﬁé gg 12; iﬁﬁé L

{ return (key.charAt(0)+27*key.charAt(1)+27*2*key.charAt(2)) % |113 71 161 «#113; q
y y y (2))

tableSize; } 114 72 162 r

’ 115 73 163 &#l15; =

Method 3 116 74 164 &#ll6; ©

Public static int hash(String key, int 117 75 165 u u

tableSize) 118 76 166 &#l18; v

119 77 167 w w

{ 120 78 170 &#l20; X

' =0 121 79 171 &#l21; ¥

int hashVal = 0; 122 74 172 z Z

for(int i=0; i<key.length(); i++) 123 7B 173 &iigi; |
124 7C 174 & .

_— * \. .

hashVal = 37*hashVal + key.charAt(i); i5e 7o ToE 195 |

hashVal %= tableSize; 126 7E 176 ~ ~

i : 127 7F 177 DEL
if(hashVal < 0) hashVal += tableSize;

} CMSC 341 Hashing 12

{

Hash'Table Class

public class SeparateChainingHashTable<AnyType>

public
public
public
public
public
public
private
private
private
private
private
private

private

SeparateChainingHashTable() {/* Later */}
SeparateChainingHashTable (int size) {/*Later*/}
void insert (AnyType x){ /*Later*/ }
void remove (AnyType x){ /*Later*/}
boolean contains(AnyType x) {/*Later */}
void makeEmpty(){ /* Later */ }
static final int DEFAULT TABLE SIZE = 101;
List<AnyType> [] thelists;
int currentSize;
void rehash(){ /* Later */ }
int myhash(AnyType x){ /* Later */ }
static int nextPrime(int n){ /* Later */ }

static boolean isPrime(int n){ /* Later */ }

CMSC 341 Hashing

13

HashTable Ops

boolean contailins(AnyType X)
o Returns true if x is present in the table.
vold 1nsert (AnyType X)

o If x already in table, do nothing.

o Otherwise, insert it, using the appropriate hash
function.

vold remove (AnyType X)
2 Remove the instance of x, if X is present.
o Otherwise, does nothing

vold makeEmpty ()

CMSC 341 Hashing

14

Hash Methods

private int myhash(AnyType X)

{

int hashVal = x.hashCode ();

o\°

hashVal %= thelilists.length;
1f(hashvVal < 0)
hashVal += thelLists.length;

return hashVal;

CMSC 341 Hashing 15

Handling Collisions

Collisions are inevitable. How to handle
them?

Separate chaining hash tables
o Store colliding items in a list.
o If mis large enough, list lengths are small.

Insertion of key k

o hash(k) to find the proper list.
o If kis in that list, do nothing, else insert k on that list.

Asymptotic performance

o If always inserted at head of list, and no duplicates,
insert = O(1) for best, worst and average cases

CMSC 341 Hashing 16

Hash Class tor Separate Chaining
To implement separate chaining, the private
data of the hash table is an array of Lists.

The hash functions are written using List
functions

private List<AnyType> [] thelLists;

CMSC 341 Hashing 17

Performance of contains()

contains

o Hash k to find the proper list.

o Call contains() on that list which returns a boolean.
Performance

o best: selected list is empty or key is first -> O(1)

o worst: let N be the number of elements in the hash table. All N
elements are in one list (all have the same hash value) and key
not there -> O(N)

o Average: suppose there are M buckets and N elements in the
table. Then expected list length = N/M -> O (N/M) = O(N) if M is
small. = O(1) if M is large.

Here A = N/M is called the load factor of the table. It is important to keep

the load factor from getting too large. If N<= M, A <=1 and O(N/M)-> O(1)
where N/M 1s constant.

CMSC 341 Hashing 18

Pertormance ot remove()
Remove k from table
o Hash Kk to find proper list.
o Remove Kk from list.

Performance

0 Best: Kis the 15t element on list, or list is empty:
O(1)

o Worst: all elements on one list: O(n)

o Average: O(N/M)-> O(1) for A<=1. So what is the big
deal? Performance for hash table and list are the same
best and worst... But average performance for a well-
designed hash table 1s much better: O(1).

CMSC 341 Hashing 19

Handling Collisions Revisited
Probing hash tables

o All elements stored in the table itself (so table should be
large. Rule of thumb: m >= 2N)

o Upon collision, item is hashed to a new (open) slot.

Hash function
h: Ux{0,1,2,....} = {0,1,....m-1}
h(k,i)=(h'(k)+f(i))modm
forsome h> U—={0,1,..., m-1}
and some f(i) such that f(0) =0
Each attempt to find an open slot (i.e.

calculating h(k, i)) is called a probe

CMSC 341 Hashing 20

HashEntry Class for Probing Hash Tables

In this case, the hash table is just an array

private static class HashEntry<AnyType>{

}

public AnyType element; // the element
public boolean isActive; // false if deleted

public HashEntry(AnyType e)

{ this(e, true); }
public HashEntry(AnyType e, boolean active)
{ element = e; 1sActive = active; }

// The array of elements

private HashEntry<AnyType> [] array;
// The number of occupied cells
private 1nt currentSize;

CMSC 341 Hashing

21

Linear Probing

Use a linear function for f(i)
f(i)=c*i
Example:
h'(k)=kmod 10 in a table of size 10, f(i) =1
So that
h(k,i)=(kmod 10 +i)mod 10

Insert the values U={89,18,49,58,69} into the hash
table

CMSC 341 Hashing

22

Linear Probing (cont.)

Problem: Clustering

2 When the table starts to fill up, performance —
O(N)

Asymptotic Performance

o Insertion and unsuccessful find, average

A is the “load factor’” — what fraction of the table is used
Number of probes = (¥2) (1+1/(1-\)?)

if A = 1, the denominator goes to zero and the number of
probes goes to infinity

CMSC 341 Hashing 23

Linear Probing (cont.)

Remove

o Can't just use the hash function(s) to find the
object and remove it, because objects that were
inserted after X were hashed based on X's
presence.

o Can just mark the cell as deleted so it won't be
found anymore.

Other elements still in right cells
Table can fill with lots of deleted junk

CMSC 341 Hashing

24

Quadratic Probing

Use a quadratic function for f(i)

f(i)=c,i¢+c,i+c,

The simplest quadratic function is f(i) = i?
Example:

Sot

Letf(i)=iFandm=10
_eth’(k)=kmod 10
nat

N(k,i)=(kmod10 +i?) mod 10

Insert the value U={89, 18, 49, 58, 69 } into an
initially empty hash table

CMSC 341 Hashing

25

Quadratic Probing (cont.)

Advantage:
0 Reduced clustering problem

Disadvantages:

o Reduced number of sequences

o No guarantee that empty slot will be found if
A2 0.5, evenif mis prime

o If mis not prime, may not find an empty slot
evenifA<0.5

CMSC 341 Hashing

26

Double Hashing

Let f(1) use another hash function
f(1)=17hy(k)

Thenh(k,l)=(h'(k)+ *hy(k))modm

And probes are performed at distances of

hy(k),2*hy(k),3*h,(k),4*h,(k), etc

Choosing h,(k)

o Don't allow h,(k) = 0 for any k.

o A good choice:
h,(k)=R-(kmodR) with R a prime smaller than m

Characteristics

o No clustering problem
o Requires a second hash function

CMSC 341 Hashing 27

Rehashing

If the table gets too full, the running time of the basic
operations starts to degrade.

For hash tables with separate chaining, “too full”
means more than one element per list (on average)

For probing hash tables, “too full” is determined as
an arbitrary value of the load factor.

To rehash, make a copy of the hash table, double
the table size, and insert all elements (from the
copy) of the old table into the new table

Rehashing is expensive, but occurs very
iInfrequently.

CMSC 341 Hashing 28

Multiplication Method

The hash function:
h(k)=[m(kA-[kA])]
where A is some real positive constant.

A very good choice of A is the inverse of the
“golden ratio.”

Given two positive numbers x and vy, the ratio
x/y is the “golden ratio” if ¢ = x/y = (x+y)/x
The golden ratio:
X2-xy-y2=0 = ¢2-¢-1=0
o = (1 + sqrt(5))/2 = 1.618033989...

~= Fib/Fib._,

CMSC 341 Hashing 29

Multiplication Method (cont.)

Because of the relationship of the golden ratio to
Fibonacci numbers, this particular value of A in the
multiplication method is called “Fibonacci hashing.”

Some values of
h(k)=[m(k¢-[k¢])]

0 fork=0
0.618m fork =1 (¢p-'=1/1.618... =0.618...)
0.236m for k = 2
=0.854m fork = 3
=0472m fork =4
=0.090m fork=5
=0.708m fork =6
0.326m fork=7

0.777m fork =32

CMSC 341 Hashing

30

Fibonacci Hashing

CMSC 341 Hashing 31

