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Red-Black Trees 

  Definition: A red-black tree is a binary 
search tree in which: 
  Every node is colored either Red or Black. 
  Each NULL pointer is considered to be a Black “node”. 
  If a node is red, its two children must be black. 
  Every path from a node to a NULL contains the same 

number of Black nodes. 
  By convention, the root is Black 

  Definition:  The black-height of a node, X, in 
a red-black tree is the number of Black 
nodes on any path to a NULL, not counting 
X. 



UMBC CSMC 341 Red-Black-Trees-1 3 

A Red-Black Tree with NULLs shown 

Black-Height of the tree (the root) = 3 
Black-Height of node “X” = 2 

X
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A Red-Black Tree with 

Black-Height = 3 
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Black Height of the tree? 

Black Height of X? 

X
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Bottom –Up Insertion 

  Insert node as usual in BST 
  Color the node Red 
  What Red-Black property may be violated? 

  Every node is Red or Black? 
  NULLs are Black? 
  If node is Red, both children must be Black? 
  Every path from node to descendant NULL must 

contain the same number of Blacks? 
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Bottom Up Insertion 
  Insert node;  

  Color it Red 
  X is pointer to it to be added to the tree 

  Cases 
0:  X is the root -- color it Black 
1:  Both parent and uncle are Red -- color parent and uncle 

Black, color grandparent Red. Point X to grandparent and 
check new situation. 

2 (zig-zag): Parent is Red, but uncle is Black. X and its parent 
are opposite type children -- color grandparent Red, color X 
Black, rotate left(right) on parent, rotate right(left) on 
grandparent 

3 (zig-zig):  Parent is Red, but uncle is Black. X and its parent 
are both left (right) children -- color parent Black, color 
grandparent Red, rotate right(left) on grandparent 
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Case 1 – U is Red 

Just Recolor and move up 

X 
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Case 2 – Zig-Zag 

Double Rotate 
   X around P; X around G 

Recolor G and X 
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Case 3 – Zig-Zig 

Single Rotate P around G 

Recolor P and G 



UMBC CSMC 341 Red-Black-Trees-1 11 

Asymptotic Cost of  Insertion 

  O(lg n) to descend to insertion point 
  O(1) to do insertion 
  O(lg n) to ascend and readjust == worst case 

only for case 1 

  Total: O(log n) 



UMBC CSMC 341 Red-Black-Trees-1 12 

11 

14 

15 
2 

1 7 

5 8 

Black node Red node 

Insert 4 into this 
R-B Tree 
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Insertion Practice 

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an 
initially empty Red-Black Tree 
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Top-Down Insertion 

An alternative to this “bottom-up” insertion is 
“top-down” insertion. 

Top-down is iterative.  It moves down the tree, 
“fixing” things as it goes. 

What is the objective of top-down’s “fixes”? 
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Theorem 1 – Any red-black tree with root x, 
has  n ≥ 2bh(x) – 1 nodes, where bh(x) is 
the black height of node x. 

Proof: by induction on height of x. 
   



UMBC CSMC 341 Red-Black-Trees-1 16 

Theorem 2 – In a red-black tree, at least half 
the nodes on any path from the root to a 
NULL must be Black. 

Proof – If there is a Red node on the path, 
there must be a corresponding Black 
node. 

Algebraically this theorem means 
    bh( x ) ≥ h/2 



UMBC CSMC 341 Red-Black-Trees-1 17 

Theorem 3 – In a red-black tree, no path from any 
node, X, to a NULL is more than twice as long as 
any other path from X to any other NULL. 

Proof:  By definition, every path from a node to any 
NULL contains the same number of Black nodes.  
By Theorem 2, a least ½ the nodes on any such 
path are Black.  Therefore, there can no more 
than twice as many nodes on any path from X to 
a NULL as on any other path.  Therefore the 
length of every path is no more than twice as 
long as any other path. 
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Theorem 4 – 
 A red-black tree with n nodes has height   

                   h ≤ 2 lg(n + 1). 
Proof: Let h be the height of the red-black 

tree with root x. By Theorem 2, 
   bh(x) ≥ h/2 
From Theorem 1, n ≥  2bh(x) - 1 
Therefore n ≥ 2 h/2 – 1 
   n + 1 ≥ 2h/2 

   lg(n  + 1) ≥ h/2 
   2lg(n + 1) ≥ h 


