
Red-Black Trees

Definitions
and
Bottom-Up Insertion

UMBC CSMC 341 Red-Black-Trees-1 2

Red-Black Trees

  Definition: A red-black tree is a binary
search tree in which:
  Every node is colored either Red or Black.
  Each NULL pointer is considered to be a Black “node”.
  If a node is red, its two children must be black.
  Every path from a node to a NULL contains the same

number of Black nodes.
  By convention, the root is Black

  Definition: The black-height of a node, X, in
a red-black tree is the number of Black
nodes on any path to a NULL, not counting
X.

UMBC CSMC 341 Red-Black-Trees-1 3

A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2

X

UMBC CSMC 341 Red-Black-Trees-1 4

A Red-Black Tree with

Black-Height = 3

UMBC CSMC 341 Red-Black-Trees-1 5

Black Height of the tree?

Black Height of X?

X

UMBC CSMC 341 Red-Black-Trees-1 6

Bottom –Up Insertion

  Insert node as usual in BST
  Color the node Red
  What Red-Black property may be violated?

  Every node is Red or Black?
  NULLs are Black?
  If node is Red, both children must be Black?
  Every path from node to descendant NULL must

contain the same number of Blacks?

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 7

Bottom Up Insertion
  Insert node;

  Color it Red
  X is pointer to it to be added to the tree

  Cases
0: X is the root -- color it Black
1: Both parent and uncle are Red -- color parent and uncle

Black, color grandparent Red. Point X to grandparent and
check new situation.

2 (zig-zag): Parent is Red, but uncle is Black. X and its parent
are opposite type children -- color grandparent Red, color X
Black, rotate left(right) on parent, rotate right(left) on
grandparent

3 (zig-zig): Parent is Red, but uncle is Black. X and its parent
are both left (right) children -- color parent Black, color
grandparent Red, rotate right(left) on grandparent

UMBC CSMC 341 Red-Black-Trees-1 8

X

P

G

U

P

G

U

Case 1 – U is Red

Just Recolor and move up

X

UMBC CSMC 341 Red-Black-Trees-1 9

X

P

G

U

S X

P G

S
U

Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X

UMBC CSMC 341 Red-Black-Trees-1 10

X

P

G

U

S P

X G

S U

Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G

UMBC CSMC 341 Red-Black-Trees-1 11

Asymptotic Cost of Insertion

  O(lg n) to descend to insertion point
  O(1) to do insertion
  O(lg n) to ascend and readjust == worst case

only for case 1

  Total: O(log n)

UMBC CSMC 341 Red-Black-Trees-1 12

11

14

15
2

1 7

5 8

Black node Red node

Insert 4 into this
R-B Tree

UMBC CSMC 341 Red-Black-Trees-1 13

Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an
initially empty Red-Black Tree

UMBC CSMC 341 Red-Black-Trees-1 14

Top-Down Insertion

An alternative to this “bottom-up” insertion is
“top-down” insertion.

Top-down is iterative. It moves down the tree,
“fixing” things as it goes.

What is the objective of top-down’s “fixes”?

UMBC CSMC 341 Red-Black-Trees-1 15

Theorem 1 – Any red-black tree with root x,
has n ≥ 2bh(x) – 1 nodes, where bh(x) is
the black height of node x.

Proof: by induction on height of x.

UMBC CSMC 341 Red-Black-Trees-1 16

Theorem 2 – In a red-black tree, at least half
the nodes on any path from the root to a
NULL must be Black.

Proof – If there is a Red node on the path,
there must be a corresponding Black
node.

Algebraically this theorem means
 bh(x) ≥ h/2

UMBC CSMC 341 Red-Black-Trees-1 17

Theorem 3 – In a red-black tree, no path from any
node, X, to a NULL is more than twice as long as
any other path from X to any other NULL.

Proof: By definition, every path from a node to any
NULL contains the same number of Black nodes.
By Theorem 2, a least ½ the nodes on any such
path are Black. Therefore, there can no more
than twice as many nodes on any path from X to
a NULL as on any other path. Therefore the
length of every path is no more than twice as
long as any other path.

UMBC CSMC 341 Red-Black-Trees-1 18

Theorem 4 –
 A red-black tree with n nodes has height

 h ≤ 2 lg(n + 1).
Proof: Let h be the height of the red-black

tree with root x. By Theorem 2,
 bh(x) ≥ h/2
From Theorem 1, n ≥ 2bh(x) - 1
Therefore n ≥ 2 h/2 – 1
 n + 1 ≥ 2h/2

 lg(n + 1) ≥ h/2
 2lg(n + 1) ≥ h

