
1

CMSC 341

Introduction to Trees

Textbook sections: 4.1-4.2

CMSC 341 Tree Intro 2

Tree ADT

  Tree definition
  A tree is a set of nodes which may be empty
  If not empty, then there is a distinguished node r,

called root and zero or more non-empty subtrees
T1, T2, … Tk, each of whose roots are connected
by a directed edge from r.

  This recursive definition leads to recursive
tree algorithms and tree properties being
proved by induction.

  Every node in a tree is the root of a subtree.

CMSC 341 Tree Intro 3

A Generic Tree

CMSC 341 Tree Intro 4

Tree Terminology

  Root of a subtree is a child of r. r is the parent.
  All children of a given node are called siblings.
  A leaf (or external node) has no children.
  An internal node is a node with one or more

children

CMSC 341 Tree Intro 5

More Tree Terminology

  A path from node V1 to node Vk is a sequence of
nodes such that Vi is the parent of Vi+1 for 1 ≤ i ≤ k.

  The length of this path is the number of edges
encountered. The length of the path is one less than
the number of nodes on the path (k – 1 in this
example)

  The depth of any node in a tree is the length of the
path from root to the node.

  All nodes of the same depth are at the same level.

CMSC 341 Tree Intro 6

More Tree Terminology (cont.)

  The depth of a tree is the depth of its deepest
leaf.

  The height of any node in a tree is the length
of the longest path from the node to a leaf.

  The height of a tree is the height of its root.
  If there is a path from V1 to V2, then V1 is an

ancestor of V2 and V2 is a descendent of V1.

CMSC 341 Tree Intro 7

A Unix directory tree

CMSC 341 Tree Intro 8

Tree Storage

  A tree node contains:
  Data Element
  Links to other nodes

  Any tree can be represented with the “first-
child, next-sibling” implementation.

class TreeNode
{
 AnyType element;
 TreeNode firstChild;
 TreeNode nextSibling;
}

CMSC 341 Tree Intro 9

Printing a Child/Sibling Tree
 // depth equals the number of tabs to indent name

 private void listAll(int depth)

 {

 printName(depth); // Print the name of the object

 if(isDirectory())

 for each file c in this directory

 (i.e. for each child)

 c.listAll(depth + 1);

 }

 public void listAll()

 {

 listAll(0);

 }

  What is the output when listAll() is used for
the Unix directory tree?

CMSC 341 Tree Intro 10

K-ary Tree

  If we know the maximum number of children
each node will have, K, we can use an array
of children references in each node.

 class KTreeNode

 {

 AnyType element;

 KTreeNode children[K];

 }

CMSC 341 Tree Intro 11

Pseudocode for Printing a K-ary Tree
 // depth equals the number of tabs to indent name
 private void listAll(int depth)

 {
 printElement(depth); // Print the object

 if(children != null)
 for each child c in children array
 c.listAll(depth + 1);

 }

 public void listAll()
 {

 listAll(0);
 }

CMSC 341 Tree Intro 12

Binary Trees

  A special case of K-ary tree is a tree whose nodes
have exactly two child references -- binary trees.

  A binary tree is a rooted tree in which no node can
have more than two children AND the children are
distinguished as left and right.

CMSC 341 Tree Intro 13

The Binary Node Class
 private class BinaryNode<AnyType>
 {
 // Constructors
 BinaryNode(AnyType theElement)
 {
 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement,
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
 {
 element = theElement; left = lt; right = rt;
 }

 AnyType element; // The data in the node
 BinaryNode<AnyType> left; // Left child reference
 BinaryNode<AnyType> right; // Right child reference
 }

CMSC 341 Tree Intro 14

Full Binary Tree

A full binary tree is a binary tree in which every
node is a leaf or has exactly two children.

CMSC 341 Tree Intro 15

FBT Theorem
  Theorem: A FBT with n internal nodes has

n + 1 leaves (external nodes).
  Proof by induction on the number of internal

nodes, n:
  Base case:

  Binary Tree of one node (the root) has:
  zero internal nodes
  one external node (the root)

  Inductive Assumption:
  Assume all FBTs with n internal nodes have n + 1

external nodes.

CMSC 341 Tree Intro 16

FBT Proof (cont’d)

  Inductive Step - prove true for a tree with n + 1 internal
nodes (i.e. a tree with n + 1 internal nodes has
(n + 1) + 1 = n + 2 leaves)
  Let T be a FBT of n internal nodes.
  Therefore T has n + 1 leaf nodes. (Inductive Assumption)
  Enlarge T so it has n+1 internal nodes by adding two nodes to

some leaf. These new nodes are therefore leaf nodes.
  Number of leaf nodes increases by 2, but the former leaf

becomes internal.
  So,

  # internal nodes becomes n + 1,
  # leaves becomes (n + 1) + 2 - 1 = n + 2

CMSC 341 Tree Intro 17

Perfect Binary Tree

  A Perfect Binary Tree is a Full Binary Tree in
which all leaves have the same depth.

CMSC 341 Tree Intro 18

PBT Theorem
  Theorem: The number of nodes in a PBT is 2h

+1-1, where h is height.
  Proof by strong induction on h, the height of the

PBT:
  Notice that the number of nodes at each level is 2l.

(Proof of this is a simple induction - left to student as
exercise). Recall that the height of the root is 0.

  Base Case:
The tree has one node; then h = 0 and n = 1
and 2(h + 1) - 1 = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n.

  Inductive Assumption:
Assume true for all PBTs with height h ≤ H.

CMSC 341 Tree Intro 19

Proof of PBT Theorem(cont)
  Prove true for PBT with height H+1:

  Consider a PBT with height H + 1. It consists of
a root and two subtrees of height <= H. Since
the theorem is true for the subtrees (by the
inductive assumption since they have
height ≤ H) the PBT with height H+1 has

  (2(H+1) - 1) nodes for the left subtree
  + (2(H+1) - 1) nodesfor the right subtree
  + 1 node for the root
  Thus, n = 2 * (2(H+1) – 1) + 1
 = 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1

CMSC 341 Tree Intro 20

Complete Binary Tree

A Complete Binary Tree is a binary tree in
which every level is completely filled, except
possibly the bottom level which is filled from
left to right.

CMSC 341 Tree Intro 21

Tree Traversals

  Inorder
  Preorder
  Postorder
  Levelorder

CMSC 341 Tree Intro 22

Tree Construction

  Example: Expression tree

CMSC 341 Tree Intro 23

Finding an element in a Binary Tree?
  Return a reference to node containing x, return null if x is not found

public BinaryNode<AnyType> find(AnyType x)

{
 return find(root, x);
}

private BinaryNode<AnyType> find(BinaryNode<AnyType> node, AnyType x)
{

 BinaryNode<AnyType> t = null; // in case we don’t find it
 if (node.element.equals(x)) // found it here??

 return node;

 // not here, look in the left subtree
 if(node.left != null)
 t = find(node.left,x);

 // if not in the left subtree, look in the right subtree

 if (t == null)
 t = find(node.right,x);

 // return reference, null if not found

 return t;
}

Implementation issues

CMSC 341 Tree Intro 24

CMSC 341 Tree Intro 25

Binary Trees and Recursion

  A Binary Tree can have many properties
  Number of leaves
  Number of interior nodes
  Is it a full binary tree?
  Is it a perfect binary tree?
  Height of the tree

  Each of these properties can be determined
using a recursive function.

CMSC 341 Tree Intro 26

Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t)
{
 // base case – usually empty tree

if (t == null) return xxxx;

 // determine if the node referred to by t has the property

 // traverse down the tree by recursively “asking” left/right
// children if their subtree has the property

 return theResult;
}

CMSC 341 Tree Intro 27

Is this a full binary tree?

boolean isFBT (BinaryNode<AnyType> t)
{

// base case – an empty tee is a FBT
 if (t == null) return true;

 // determine if this node is “full”
// if just one child, return – the tree is not full

 if ((t.left == null && t.right != null)
 || (t.right == null && t.left != null))

 return false;

 // if this node is full, “ask” its subtrees if they are full
// if both are FBTs, then the entire tree is an FBT
// if either of the subtrees is not FBT, then the tree is not

 return isFBT(t.right) && isFBT(t.left);

}

CMSC 341 Tree Intro 28

Other Recursive Binary Tree Functions

  Count number of interior nodes
 int countInteriorNodes(BinaryNode<AnyType> t);

  Determine the height of a binary tree. By
convention (and for ease of coding) the
height of an empty tree is -1

 int height(BinaryNode<AnyType> t);

  Many others

CMSC 341 Tree Intro 29

Other Binary Tree Operations

  Insertion: inserts a new element into a binary
tree?

  Removal: removes an element from a binary
tree?

Tree construction

CMSC 341 Tree Intro 30

CMSC 341 Tree Intro 31

Constructing Trees

  Is it possible to reconstruct a Binary Tree
from just one of its pre-order, inorder, or post-
order sequences?

CMSC 341 Tree Intro 32

Constructing Trees (cont)

  Given two sequences (say pre-order and
inorder) is the tree unique?

