CMSC 341

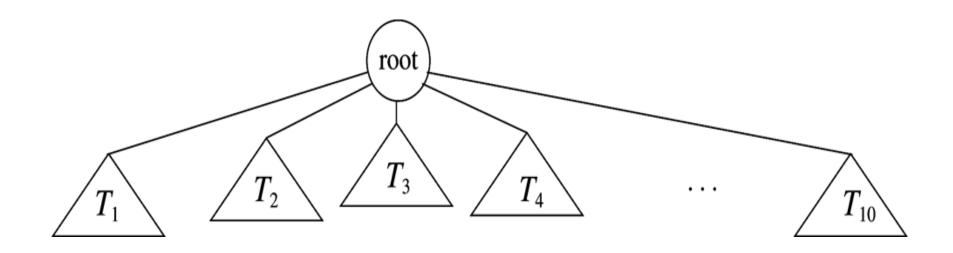
Introduction to Trees

Textbook sections: 4.1-4.2

Tree ADT

- Tree definition
 - A tree is a set of nodes which may be empty
 - If not empty, then there is a distinguished node r, called root and zero or more non-empty subtrees T₁, T₂, ... T_k, each of whose roots are connected by a directed edge from r.
- This recursive definition leads to recursive tree algorithms and tree properties being proved by induction.
- Every node in a tree is the root of a subtree.

A Generic Tree



Tree Terminology

- Root of a subtree is a child of r. r is the parent.
- All children of a given node are called siblings.
- A leaf (or external node) has no children.
- An internal node is a node with one or more children

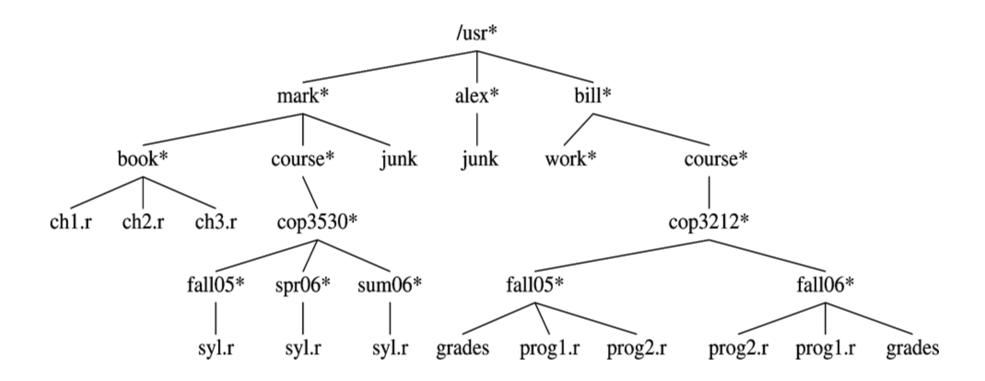
More Tree Terminology

- A path from node V₁ to node Vk is a sequence of nodes such that Vi is the parent of Vi+1 for 1 ≤ i ≤ k.
- The length of this path is the number of edges encountered. The length of the path is one less than the number of nodes on the path (k – 1 in this example)
- The depth of any node in a tree is the length of the path from root to the node.
- All nodes of the same depth are at the same level.

More Tree Terminology (cont.)

- The depth of a tree is the depth of its deepest leaf.
- The height of any node in a tree is the length of the longest path from the node to a leaf.
- The height of a tree is the height of its root.
- If there is a path from V₁ to V₂, then V₁ is an ancestor of V₂ and V₂ is a descendent of V₁.

A Unix directory tree



Tree Storage

- A tree node contains:
 - Data Element
 - Links to other nodes
- Any tree can be represented with the "firstchild, next-sibling" implementation.

```
class TreeNode
{
    AnyType element;
    TreeNode firstChild;
    TreeNode nextSibling;
}
```

Printing a Child/Sibling Tree

What is the output when listAll() is used for the Unix directory tree?

K-ary Tree

If we know the maximum number of children each node will have, K, we can use an array of children references in each node.

```
class KTreeNode
{
   AnyType element;
   KTreeNode children[ K ];
}
```

Pseudocode for Printing a K-ary Tree

```
// depth equals the number of tabs to indent name
private void listAll( int depth )
    printElement( depth ); // Print the object
    if( children != null )
       for each child c in children array
           c.listAll( depth + 1 );
public void listAll( )
    listAll(0);
```

Binary Trees

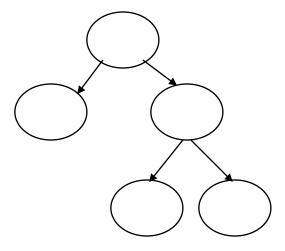
- A special case of K-ary tree is a tree whose nodes have exactly two child references -- binary trees.
- A binary tree is a rooted tree in which no node can have more than two children AND the children are distinguished as left and right.

The Binary Node Class

```
private class BinaryNode<AnyType>
    // Constructors
    BinaryNode( AnyType theElement )
           this (the Element, null, null);
    BinaryNode (AnyType theElement,
          BinaryNode<AnyType> lt, BinaryNode<AnyType> rt )
           element = theElement; left = lt; right = rt;
                                // The data in the node
    AnyType element;
                                // Left child reference
    BinaryNode<AnyType> left;
    BinaryNode<AnyType> right; // Right child reference
```

Full Binary Tree

A full binary tree is a binary tree in which every node is a leaf or has exactly two children.



FBT Theorem

- Theorem: A FBT with n internal nodes has n + 1 leaves (external nodes).
- Proof by induction on the number of internal nodes, n:
- Base case:
 - Binary Tree of one node (the root) has:
 - zero internal nodes
 - one external node (the root)
- Inductive Assumption:
 - Assume all FBTs with n internal nodes have n + 1 external nodes.

FBT Proof (cont'd)

- Inductive Step prove true for a tree with n + 1 internal nodes (i.e. a tree with n + 1 internal nodes has (n + 1) + 1 = n + 2 leaves)
 - Let T be a FBT of n internal nodes.
 - Therefore T has n + 1 leaf nodes. (Inductive Assumption)
 - Enlarge T so it has n+1 internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
 - Number of leaf nodes increases by 2, but the former leaf becomes internal.
 - So,
 - # internal nodes becomes n + 1,
 - # leaves becomes (n + 1) + 2 1 = n + 2

Perfect Binary Tree

A Perfect Binary Tree is a Full Binary Tree in which all leaves have the same depth.

PBT Theorem

- Theorem: The number of nodes in a PBT is 2^h +1-1, where h is height.
- Proof by strong induction on h, the height of the PBT:
 - Notice that the number of nodes at each level is 2^l.
 (Proof of this is a simple induction left to student as exercise). Recall that the height of the root is 0.
 - Base Case: The tree has one node; then h = 0 and n = 1and $2^{(h+1)} - 1 = 2^{(0+1)} - 1 = 2^1 - 1 = 2 - 1 = 1 = n$.
 - Inductive Assumption:
 Assume true for all PBTs with height h ≤ H.

Proof of PBT Theorem(cont)

- Prove true for PBT with height H+1:
 - Consider a PBT with height H + 1. It consists of a root and two subtrees of height <= H. Since the theorem is true for the subtrees (by the inductive assumption since they have height ≤ H) the PBT with height H+1 has
 - (2^(H+1) 1) nodes for the left subtree
 - \Box + (2^(H+1) 1) nodesfor the right subtree
 - + 1 node for the root
 - □ Thus, $n = 2 * (2^{(H+1)} 1) + 1$ = $2^{((H+1)+1)} - 2 + 1 = 2^{((H+1)+1)} - 1$

Complete Binary Tree

A Complete Binary Tree is a binary tree in which every level is completely filled, except possibly the bottom level which is filled from left to right.

Tree Traversals

- Inorder
- Preorder
- Postorder
- Levelorder

Tree Construction

Example: Expression tree

Finding an element in a Binary Tree?

Return a reference to node containing x, return null if x is not found

```
public BinaryNode<AnyType> find(AnyType x)
   return find(root, x);
private BinaryNode<AnyType> find( BinaryNode<AnyType> node, AnyType x)
  if ( node.element.equals(x) ) // found it here??
       return node;
  // not here, look in the left subtree
  if(node.left != null)
       t = find(node.left,x);
  // if not in the left subtree, look in the right subtree
  if (t == null)
       t = find(node.right,x);
  // return reference, null if not found
  return t;
```

Implementation issues

Binary Trees and Recursion

- A Binary Tree can have many properties
 - Number of leaves
 - Number of interior nodes
 - Is it a full binary tree?
 - Is it a perfect binary tree?
 - Height of the tree
- Each of these properties can be determined using a recursive function.

Recursive Binary Tree Function

```
return-type function (BinaryNode<AnyType> t)
{
    // base case - usually empty tree
    if (t == null) return xxxx;

    // determine if the node referred to by t has the property

    // traverse down the tree by recursively "asking" left/right
    // children if their subtree has the property

return theResult;
}
```

Is this a full binary tree?

```
boolean isFBT (BinaryNode<AnyType> t)
  // base case - an empty tee is a FBT
  if (t == null) return true;
   // determine if this node is "full"
   // if just one child, return - the tree is not full
   if ((t.left == null && t.right != null)
       (t.right == null && t.left != null))
       return false;
   // if this node is full, "ask" its subtrees if they are full
   // if both are FBTs, then the entire tree is an FBT
   // if either of the subtrees is not FBT, then the tree is not
   return isFBT( t.right ) && isFBT( t.left );
```

Other Recursive Binary Tree Functions

Count number of interior nodes

```
int countInteriorNodes( BinaryNode<AnyType> t);
```

 Determine the height of a binary tree. By convention (and for ease of coding) the height of an empty tree is -1

```
int height( BinaryNode<AnyType> t);
```

Many others

Other Binary Tree Operations

- Insertion: inserts a new element into a binary tree?
- Removal: removes an element from a binary tree?

Tree construction

Constructing Trees

Is it possible to reconstruct a Binary Tree from just one of its pre-order, inorder, or postorder sequences?

Constructing Trees (cont)

Given two sequences (say pre-order and inorder) is the tree unique?