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CMSC 341 

Introduction to Trees 

Textbook sections: 4.1-4.2  
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Tree ADT 

  Tree definition 
  A tree is a set of nodes which may be empty 
  If not empty, then there is a distinguished node r, 

called root and zero or more non-empty subtrees 
T1, T2,  … Tk, each of whose roots are connected 
by a directed edge from r.  

  This recursive definition leads to recursive 
tree algorithms and tree properties being 
proved by induction. 

  Every node in a tree is the root of a subtree. 
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A Generic Tree 
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Tree Terminology 

  Root of a subtree is a child of r. r is the parent. 
  All children of a given node are called siblings. 
  A leaf (or external node) has no children. 
  An internal node is a node with one or more 

children 
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More Tree Terminology 

  A path from node V1 to node Vk is a sequence of 
nodes such that Vi is the parent of Vi+1 for 1 ≤ i ≤ k. 

  The length of this path is the number of edges 
encountered.  The length of the path is one less than 
the number of nodes on the path ( k – 1 in this 
example) 

  The depth of any node in a tree is the length of the 
path from root to the node. 

  All nodes of the same depth are at the same level. 
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More Tree Terminology (cont.) 

  The depth of a tree is the depth of its deepest 
leaf. 

  The height of any node in a tree is the length 
of the longest path from the node to a leaf. 

  The height of a tree is the height of its root. 
  If there is a path from V1 to V2, then V1 is an 

ancestor of V2 and V2 is a descendent of V1. 
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A Unix directory tree 
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Tree Storage 

  A tree node contains: 
  Data Element 
  Links to other nodes 

  Any tree can be represented with the “first-
child, next-sibling” implementation. 

class TreeNode 
{ 
    AnyType    element; 
    TreeNode firstChild; 
    TreeNode nextSibling; 
} 
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Printing a Child/Sibling Tree 
  // depth equals the number of tabs to indent name  

 private void listAll( int depth ) 

  { 

            printName( depth ); // Print the name of the object 

            if( isDirectory( ) ) 

                  for each file c in this directory 

       (i.e. for each child) 

                         c.listAll( depth + 1 ); 

  } 

  public void listAll( ) 

  { 

           listAll( 0 ); 

  } 

  What is the output when listAll( ) is used for 
the Unix directory tree? 
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K-ary Tree 

  If we know the maximum number of children 
each node will have, K, we can use an array 
of children references in each node. 

 class KTreeNode 

 { 

  AnyType element; 

  KTreeNode children[ K ]; 

 } 
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Pseudocode for Printing a K-ary Tree 
  // depth equals the number of tabs to indent name  
 private void listAll( int depth ) 

  { 
     printElement( depth ); // Print the object 

       if( children != null ) 
          for each child c in children array 
              c.listAll( depth + 1 ); 

  } 

  public void listAll( ) 
  { 

      listAll( 0 ); 
  } 
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Binary Trees 

  A special case of K-ary tree is a tree whose nodes 
have exactly two child references -- binary trees. 

  A binary tree is a rooted tree in which no node can 
have more than two children AND the children are 
distinguished as left and right.  
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The Binary Node Class 
  private class BinaryNode<AnyType> 
 { 
    // Constructors 
     BinaryNode( AnyType theElement ) 
     {  
    this( theElement, null, null );  
   } 

     BinaryNode( AnyType theElement, 
    BinaryNode<AnyType> lt, BinaryNode<AnyType> rt ) 
       {  
    element  = theElement; left = lt; right = rt;  
   } 

       AnyType element;            // The data in the node 
       BinaryNode<AnyType> left;   // Left child reference 
       BinaryNode<AnyType> right;  // Right child reference 
    } 
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Full Binary Tree 

A full binary tree is a binary tree in which every 
node is a leaf or has exactly two children. 
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FBT Theorem 
  Theorem: A FBT with n internal nodes has  

n + 1 leaves (external nodes). 
  Proof by induction on the number of internal 

nodes, n: 
  Base case: 

  Binary Tree of one node (the root) has: 
  zero internal nodes 
  one external node (the root) 

  Inductive Assumption: 
  Assume all FBTs with n internal nodes have n + 1 

external nodes.   
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FBT Proof  (cont’d) 

  Inductive Step - prove true for a tree with n + 1 internal 
nodes (i.e. a tree with n + 1 internal nodes has  
(n + 1) + 1 = n + 2 leaves) 
  Let T be a FBT of n internal nodes.  
  Therefore T has n + 1 leaf nodes. (Inductive Assumption)  
  Enlarge T so it has n+1 internal nodes by adding two nodes to 

some leaf.  These new nodes are therefore leaf nodes. 
  Number of leaf nodes increases by 2, but the former leaf 

becomes internal. 
  So,  

  # internal nodes becomes n + 1,  
  # leaves becomes (n + 1) + 2 - 1 = n + 2 
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Perfect Binary Tree 

  A Perfect Binary Tree is a Full Binary Tree in 
which all leaves have the same depth. 
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PBT Theorem 
  Theorem: The number of nodes in a PBT is 2h

+1-1, where h is height. 
  Proof by strong induction on h, the height of the 

PBT: 
  Notice that the number of nodes at each level is 2l.  

(Proof of this is a simple induction - left to student as 
exercise).  Recall that the height of the root is 0.  

  Base Case: 
The tree has one node; then h  = 0 and n = 1  
and 2(h + 1) - 1 = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n. 

  Inductive Assumption: 
Assume true for all PBTs with height h ≤ H.   
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Proof  of  PBT Theorem(cont) 
  Prove true for PBT with height H+1: 

  Consider a PBT with height H + 1. It consists of 
a root and two subtrees of height <= H. Since 
the theorem is true for the subtrees (by the 
inductive assumption since they have  
height ≤ H)  the PBT with height H+1 has 

     (2(H+1) - 1) nodes for the left subtree 
  + (2(H+1) - 1) nodesfor the right subtree 
  + 1  node for the root 
  Thus, n = 2 * (2(H+1) – 1) + 1 
  = 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1 
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Complete Binary Tree 

A Complete Binary Tree is a binary tree in 
which every level is completely filled, except 
possibly the bottom level which is filled from 
left to right. 



CMSC 341 Tree Intro 21 

Tree Traversals 

  Inorder 
  Preorder 
  Postorder 
  Levelorder 
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Tree Construction 

  Example: Expression tree 
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Finding an element in a Binary Tree? 
    Return a reference to node containing x, return null if x is not found 

public BinaryNode<AnyType> find(AnyType x) 

{ 
    return find(root, x); 
} 

private BinaryNode<AnyType> find( BinaryNode<AnyType> node, AnyType x) 
{ 

 BinaryNode<AnyType> t = null;    // in case we don’t find it 
 if ( node.element.equals(x) )  // found it here??  

  return node;   

 // not here, look in the left subtree 
 if(node.left != null) 
  t = find(node.left,x); 

 // if not in the left subtree, look in the right subtree 

 if ( t == null) 
  t = find(node.right,x); 

 // return reference, null if not found 

 return t; 
} 



Implementation issues 
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Binary Trees and Recursion 

  A Binary Tree can have many properties 
  Number of leaves 
  Number of interior nodes 
  Is it a full binary tree? 
  Is it a perfect binary tree? 
  Height of the tree 

  Each of these properties can be determined 
using a recursive function. 
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Recursive Binary Tree Function 

return-type function (BinaryNode<AnyType> t) 
{ 
    // base case – usually empty tree 

if (t == null) return xxxx; 

 // determine if the node referred to by t has the property 

 // traverse down the tree by recursively “asking” left/right  
// children if their subtree has the property 

 return theResult; 
} 
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Is this a full binary tree? 

boolean  isFBT (BinaryNode<AnyType> t) 
{ 

// base case – an empty tee is a FBT 
 if (t == null) return true; 

 // determine if this node is “full” 
// if just one child, return – the tree is not full 

 if ((t.left == null && t.right != null) 
 ||  (t.right == null && t.left != null)) 

 return false; 

 // if this node is full, “ask” its subtrees if they are full 
// if both are FBTs, then the entire tree is an FBT 
// if either of the subtrees is not FBT, then the tree is not 

 return isFBT( t.right ) && isFBT( t.left ); 

} 
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Other Recursive Binary Tree Functions 

  Count number of interior nodes 
 int countInteriorNodes( BinaryNode<AnyType> t); 

  Determine the height of a binary tree.  By 
convention (and for ease of coding) the 
height of an empty tree is -1 

 int height( BinaryNode<AnyType> t); 

  Many others 
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Other Binary Tree Operations 

  Insertion: inserts a new element into a binary 
tree? 

  Removal: removes an element from a binary 
tree? 



Tree construction 
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Constructing Trees 

  Is it possible to reconstruct a Binary Tree 
from just one of its pre-order, inorder, or post-
order sequences? 
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Constructing Trees (cont) 

  Given two sequences (say pre-order and 
inorder) is the tree unique? 


