
Announcements

•  P0 due 11pm today; Hw1 due this Thur.
•  P1 out today, due Oct 1st
•  Midterm 1: Oct 3rd (overview – BST)
•  Schedule site updated

– All lecture slides before midterm 1 are up

2

CMSC 341

Stacks and Queues

Textbook Sections 3.6 - 3.7

CMSC 341 Stacks & Queues 3

Stacks

CMSC 341 Stacks & Queues 4

Stack ADT

  Basic operations are push, pop, and top
  Why stack?

  What is the running time for these operations?

Stack Model

CMSC 341 Stacks & Queues 5

Stacks

  A restricted list where insertions and
deletions can only be performed at one
location, the end of the list (top).

  LIFO – Last In First Out
  Laundry Basket – last thing you put in is the first

thing you remove
  Plates – remove from the top of the stack and add

to the top of the stack

CMSC 341 Stacks & Queues 6

Adapting Lists to Implement Stacks

  Adapter Design Pattern
  Allow a client to use a class whose interface

is different from the one expected by the
client

  Do not modify client or class, write adapter
class that sits between them

  In this case, the List is an adapter for the
Stack. The client (user) calls methods of the
Stack which in turn calls appropriate List
method(s).

CMSC 341 Stacks & Queues 7

Client (Stack user)

Stack (adapter)

List (adaptee)

theStack.push(10)

theList.add(0, 10) ;

Adapter Model for Stack

Examples

•  Balancing symbols
•  Infix to postfix conversion
•  Postfix expressions

CMSC 341 Stacks &Queues 8

Example 1: Balancing symbols
•  Algorithm:

Make an empty stack
Read characters until the end of the file

(1)  If the character is an opening symbol, push it into the stack.
else

(2)  If it is a closing symbol,
(1)  If the stack is empty, report an error, else
(2)  Pop the stack & check the popped

(1)  Error correspondence with the open symbol – error
(2)  Else continue

If the stack is not empty report an error.

CMSC 341 Stacks &Queues 9

Examples: [()], [(]) (please see lecture notes)

Example 2: Infix to postfix conversion
Make an empty stack
Read the characters until the end of the equation
 If read an operand, output
 If read a right parenthesis,
 pop till a corresponding left parenthesis
 If read + or * or (
 pop entries from the stack until we find an entry of lower priority
 exception: never remove a (from the stack except when

processing a)
 push the operator onto the stack
Pop the stack and output until it is empty

10

Example: a + b*c + (d*e + f)*g  abc*+de*f+g*+ (please see lecture notes)
Idea: the stack represents pending operators. When some of the operators on the
stack that have high precedence are not known to be completed, and should be
popped, because they are no longer pending.

Example 3: Postfix expressions
Make an empty stack
Read the characters until the end of the equation
 If read a number, push
 If read an operator,
 pop two numbers and apply the operator
 push the result to the stack

11

Examples: compute abc*+de*f+g*+ (please see lecture notes)
 compute 6523+8*+3+*

CMSC 341 Stacks & Queues 12

Queues

CMSC 341 Stacks & Queues 13

Queue ADT

  Basic Operations are enqueue and dequeue

CMSC 341 Stacks & Queues 14

Queues
  Restricted List

  enqueue(): only add to tail (or the rear)
  dequeue(): only deletes (and returns) the

element from the head (or the front)
  Examples

  line waiting for service; jobs waiting to print
  network access to a file server

  Implement as an adapter of List
  Both arrayList and linkedList work
  Running time O(1) for enqueue and dequeue: is

this possible for linkedList and arrayList?

CMSC 341 Stacks & Queues 15

Client (Queue user)

List (adaptee)

theQ.enqueue(10)

theList.add(theList.size() -1, 10)

Queue (adapter)

linkedList implementation: Adapter Model for
Queue

CMSC 341 Stacks & Queues 16

ArrayList implementation: Circular Queue

•  Adapter pattern may be impractical
•  Overhead for creating, deleting nodes
•  Max size of queue is often known

•  A circular queue is a fixed size array
•  Slots in array reused after elements dequeued

CMSC 341 Stacks & Queues 17

Circular Queue Data
•  A fixed size array
•  Control Variables

arraySize
 the fixed size (capacity) of the array
currentSize
 the current number of items in the queue
 Initialized to 0
front
 the array index from which the next item will be dequeued.
 Initialized to 0
back
 the array index last item that was enqueued
 Initialized to -1

CMSC 341 Stacks & Queues 18

Circular Queue Psuedocode
void enqueue(Object x) {

 if currentSize == arraySize, throw exception // Q is full

 back = (back + 1) % arraySize;

 array[back] = x;

 ++currentSize;

}

Object dequeue() {

 if currentSize == 0, throw exception // Q is empty

 --currentSize;

 Object x = array[front];

 front = (front + 1) % arraySize

 return x;

}

CMSC 341 Stacks & Queues 19

Circular Queue Example

 0 1 2 3 4 5

Trace the contents of the array and the values of currentSize, front and back after each of the following
operations.

1. enqueue(12) 7. enqueue(42)

2. enqueue(17) 8. dequeue()

3. enqueue(43) 9. enqueue(33)

4. enqueue(62) 10. enqueue(18)

5. dequeue() 11. enqueue(99)

6. dequeue()

