
Announcements

•  Project 0 is out. Project submission
instruction is online. due on Sept 17 @ 11
pm.

•  TA office hours posted
•  Lecture notes (with answers) uploaded

CMSC 341 CVS/Ant 1

CMSC 341 CVS/Ant 2

CMSC 341

CVS / Ant

CMSC 341 CVS/Ant 3

CVS

CVS – why do you need it?

•  Concurrent version control
•  Benefits:
– Avoids disaster caused by deletion; recover is

easy
– Allows team work
– Keeps a record of the changes made over time
– Supports multiple software releases
–  Is a time machine
–  Is location-independent

CMSC 341 CVS/Ant 4

CMSC 341 CVS/Ant 5

What is CVS?
  Concurrent Versioning System (CVS) is a place to

store all the various revisions of the stuff you write
while developing an application.
  Open source
  Easy to install and use
  Simple command line client
  Wide integration in a lot of development tools
  Project 0 and project 0 only in this course

  Resources:
  Pragmatic Version Control using CVS (on our schedule

page.)

CMSC 341 CVS/Ant 6

CVS Terminology

  Repository – the place where resources (files) are
stored

  Checkout – copy resources from the repository and
create a working copy

  Checkin/Commit – place resources from your
working copy into the repository

  Add – place a resource under version control
  Remove – delete a resource from version control
  Update – pull down changes from the repository into

your working copy

CVS commands
•  cvs add <file or dir name>
•  cvs update .
•  cvs checkout .
•  cvs remove <file or dir name>
•  cvs commit –m “say something here.”
•  cvs log
•  cvs diff –r 1.1 r 1.2 <file or dir name>
•  cvs update –j 1.3 –j 1.2 <file name>
•  Resolve conflict…..

CMSC 341 CVS/Ant 7

What should NOT be stored?

•  Generated files
–  .o, doc

CMSC 341 CVS/Ant 8

CMSC 341 CVS/Ant 9

Ant

CMSC 341 CVS/Ant 10

What is Ant?

CMSC 341 CVS/Ant 11

Anatomy of a Build File

  Ant’s build files are written in XML
  Convention is to call file build.xml

  Each build file contains
  A project
  At least 1 target

  Targets are composed of some number of tasks
  Build files may also contain properties

  Like macros in a make file

  Comments are within <!-- --> blocks

CMSC 341 CVS/Ant 12

Projects

  The project tag is used to define the project
to which the ANT file applies

  Projects tags typically contain 3 attributes
  name – a logical name for the project
  default – the default target to execute
  basedir – the base directory relative to which all

operations are performed
  Additionally, a description for the project can

be specified from within the project tag

CMSC 341 CVS/Ant 13

Project tag
<project name="Sample Project" default="compile" basedir=".">

 <description>
 A sample build file for this project
 Recall that “.” (dot) refers to the current directory
 </description>

</project>

CMSC 341 CVS/Ant 14

Properties

  Build files may contain constants (known as
properties) to assign a value to a variable which can
then be used throughout the project
  Makes maintaining large build files more manageable and

easily changeable

  Projects can have a set of properties
•  Property tags consist of a name/value pair

  Use the property names throughout the build file
  The value is substituted for the name when the build file is

“executed”

CMSC 341 CVS/Ant 15

Build File with Properties

<project name="Sample Project" default="compile" basedir=".">

 <description>
 A sample build file for this project
 </description>

 <!-- global properties (constants) for this build file -->
 <property name="source.dir" location="src"/>
 <property name="build.dir" location="bin"/>
 <property name="doc.dir" location="doc"/>

</project>

CMSC 341 CVS/Ant 16

Tasks
  A task represents an action that needs execution
  Tasks have a variable number of attributes which

are task dependant
  There are a number of built-in tasks, most of

which are things which you would typically do as
part of a build process
  mkdir - create a directory
  javac - compile java source code
  java - execute a Java .class file
  javadoc - run the javadoc tool over some files
  And many, many others…

  For a full list see: http://ant.apache.org/manual/
tasksoverview.html

CMSC 341 CVS/Ant 17

Targets
  The target tag has the following required attribute

  name – the logical name for a target

  Targets may also have optional attributes such as
  depends – a list of other target names for which this task is

dependant upon, the specified task(s) get executed first
  description – a description of what a target does

  Targets in Ant can depend on some number of other
targets
  For example, we might have a target to create a jarfile, which first

depends upon another target to compile the code
  Targets contain a list of tasks to be executed

CMSC 341 CVS/Ant 18

Build File with Targets
<project name="Sample Project" default="compile" basedir=".">
 <!-- set up some directories used by this project -->
 <target name="init" description="setup project directories">
 <!-- list of tasks to be executed -->
 </target>

 <!-- Compile the java code in src dir into build dir -->
 <target name="compile" depends="init" description="compile java sources">
 <!-- list of tasks to be executed -->
 </target>

 <!-- Generate javadocs for current project into docs dir -->
 <target name="doc" depends="init" description="generate documentation">
 <!-- list of tasks to be executed -->
 </target>

<!-- Execute main in the specified class under ${build.dir} -->
 <target name=”run" depends=“compile” description=”run the application">
 <!-- list of tasks to be executed -->
 </target>

 <!-- Delete the build & doc directories and Emacs backup (*~) files -->
 <target name="clean" description="tidy up the workspace">
 <!-- list of tasks to be executed -->
 </target>
</project>

CMSC 341 CVS/Ant 19

Initialization Target & Tasks

  Our initialization target creates the build and
documentation directories
  The mkdir task creates a directory

<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- set up some directories used by this project -->
 <target name="init" description="setup project directories">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${doc.dir}"/>
 </target>

 ...

</project>

CMSC 341 CVS/Ant 20

Compilation Target & Tasks
  Our compilation target will compile all java files in the source

directory
  The javac task compiles sources into classes
  Note the dependence on the init task

<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- Compile the java code in ${src.dir} into ${build.dir} -->
 <target name="compile" depends="init" description="compile java sources">
 <javac srcdir="${source.dir}" destdir="${build.dir}"/>
 </target>

 ...

</project>

CMSC 341 CVS/Ant 21

Run Target & Tasks
  Our run target will execute main in the fully specified class

  Typically dependent on the compile task
<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- Execute main in the fully qualified name under ${build.dir} -->
 <target name=”run" depends=”compile" description=“run the application">
 <java directory=“${build.dir}” classname=“${main.class}” fork=“yes”>
 <arg line=“${args}” />
 </java>
 </target>

 ...

</project>

CMSC 341 CVS/Ant 22

Running Ant – Command Line

  Move into the directory which contains the build.xml file
  Type ant followed by the name of a target

 unix> ant run

 unix> ant compile

  Type ant at the unix prompt to run the project’s default
target -- see screen shot on next page
 unix> ant

CMSC 341 CVS/Ant 23

Ant screen snapshot

