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Exponents 

•  Identities 

 (XA)B = XAB  
  
 XA * XB = XA+B 

 XA / XB = XA-B 

 XA + XB ≠ XA+B 
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Logarithms 
•  Definition: N = logAX if and only if AN = X 
•  In this course and text, all logarithms are base 2 
unless otherwise noted 

•  Identities 

  

BABABAAB loglog)/log(;logloglog −=+=
AkAk loglog =
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Mathematical series  
Geometric series: 
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Mathematical series (cont.) 

Infinite series. Ex.  

Other series: 
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Proof by induction 
Three steps:  to prove a theorem F(N) for any positive integer N                                

Step 1: Base case:  prove F(1) is true 
 there may be different base cases (or more than one base) 
Step 2: Hypothesis: assume F(k) is true for any k >= 1 
 (it is an assumption, don’t try to prove it) 
Step 3: Inductive proof:  
 prove that  if F(k) is true (assumption) then F(k+1) is true 
F(1)    from base case 
F(2)    from F(1) and inductive proof 
F(3)    from F(2) and inductive proof 
     … 
F(k+1) from F(k) and inductive proof 
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Proof by induction 

Ex., show that                                            
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Base case: N  1: 

LHS: 1.
RHS: 
   1 (1 1) (2 1 1) / 6 1
The theorem holds.
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exercise 

Fibonacci numbers: 
•  0, 1, 1, 2, 3, 5, 8, 13,… 
•  Formal definition: 
F(0) = 0; F(1) = 1; F(n) = F(n-1) + F(n-2) for n > 1. 

Show that  

(We showed this in class.) 
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