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Math Review
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Logarithms
* Definition: N = log, X if and only if A = X

* In this course and text, all logarithms are base 2
unless otherwise noted

» Identities
log Ak = klog A
logAB =log A+ logB; log(A/B)=1logA-1logB



Mathematical series
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Mathematical series (cont.)
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Proof by induction

Three steps: to prove a theorem F(N) for any positive integer N
Step 1: Base case: prove F(1) 1s true
there may be different base cases (or more than one base)

Step 2: Hypothesis: assume F(k) 1s true for any k >= 1
(1t 1s an assumption, don’t try to prove it)
Step 3: Inductive proof:
prove that if F(k) 1s true (assumption) then F(k+1) 1s true
F(1) from base case
F(2) from F(1) and inductive proof
F(3) from F(2) and inductive proof

F(k+1) from F(k) and inductive proof



Proof by induction

v .2 NIN+DE2ZN+1)
E =

Ex., show that i

i=1 6
Base case:N = I: Inductive proof
2 n+l 2 n 2
LHS: E;i 1. Yoio= Y i (1)
RHS: _ n(n+1)(2n+1) +(n+1)2
1-(1+1)- (2 1+1)/6 =1 6
The theorem holds. = (n+1D)(n(2n +1) + 6(n +1))
6
_ (n+1)(2n° +Tn+6)
Hypothesis : assume - 6
En j2 n(n + 1)(2n + 1) 3 (n + 1)(72 - 2)(2n - 3)
i=1" = -
6 6
holds for any n = 1. _(m+D((n+D)+D2(n+1)+1)

6

7



exercise

Fibonacci numbers:
e 0,1,1,2,3,5,8,13,...
 Formal definition:
F(0)=0; F(1)=1; F(n) = F(n-1) + F(n-2) forn> 1.

Show that EN F(i)=F(N +2)-1

(We showed this 1n class.)



