
CMSC 341

Java Review

CMSC 341 Java Review 2

Running and Compiling Java

Java
Code

Java
Bytecode

JRE for
Linux

JRE for
Windows

Java compiler

Hello.java

javac Hello.java

Hello.class

Java interpreter
translates bytecode to
machine code in JRE

JRE contains class libraries which are loaded at runtime.

CMSC 341 Java Review 3

Methods in Java

The main method has a specific signature.
  Example: “Hello world!” Program in Java

public class Hello

{

 public static void main(String args[])

 {

 System.out.println(“Hello world!”);

 }

} Notice no semi-colon at the end!

CMSC 341 Java Review 4

Data Types

  There are two types of data types in Java –
primitives and references.

  Primitives are data types that store data.
  References store the address of an object,

which is encapsulated data.
int x = 5; Date d = new Date();

5

x

int

d

FEO3

Date ref

Date
obj

FEO3

08/03/2007
CMSC 341 Java Review 5

Arrays

  Arrays in Java are objects. The first line of code
creates a reference for an array object.

  The second line creates the array object.
 int [] arrayRef;

 arrayRef = new int[5];
 arrayRef[2] = 5;

  All arrays have a length property that gives you the
number of elements in the array.
  args.length is determined at runtime

int [] ref

arrayRef

DFO7 Array
obj

DFO7

5
0

0

0

0

CMSC 341 Java Review 6

Arrays (cont.)

  An array of objects is an array of object
references until the objects are initialized.

 Point pArray [] = new Point[5];

 pArray[2] = new Point();

Point []
ref

pArray

CDO8 Array
obj

CDO8

null

null

AB12
null

null

AB12
Point
obj

CMSC 341 Java Review 7

Multidimensional Arrays

  A pictorial rendition of twodim2.

int [] []
ref

twodim2 Array
obj of
array
refs

Array
obj

Array
obj

Array
obj

1 2

3 4

5 6 7 8

3

Each element is
an int [] ref

CMSC 341 Java Review 8

Java Naming Conventions

  Classes and Interfaces
StringBuffer, Integer, MyDate

  Identifiers for methods, fields, and variables
_name, getName, setName, isName, birthDate

  Packages
java.lang, java.util, proj1

  Constants
PI, MAX_NUMBER

CMSC 341 Java Review 9

Comments

  Java supports three types of comments.
  C style /* multi-liner comments */
  C++ style // one liner comments
  Javadoc

/**
 This is an example of a javadoc comment. These

comments can be converted to part of the pages you
see in the API.

*/

CMSC 341 Java Review 10

Access Control

private

default

protected

public

Modifier Same class Same
package

Subclass Universe

CMSC 341 Java Review 11

Access Control for Classes

  Classes may have either public or package
accessibility.

  Only one public class per file.
  Omitting the access modifier prior to class

keyword gives the class package
accessibility.

CMSC 341 Java Review 12

Classes

  In Java, all classes at some point in their
inheritance hierarchy are subclasses of
java.lang.Object, therefore all objects have
some inherited, default implementation
before you begin to code them.
  String toString()
  boolean equals(Object o)

CMSC 341 Java Review 13

Inheritance in Java
  Inheritance is implemented using the keyword extends.

public class Employee extends Person
{
 //Class definition goes here – only the
 //implementation for the specialized behavior
}

  A class may only inherit from only one superclass.
  If a class is not derived from a super class then it is derived

from java.lang.Object. The following two class declarations
are equivalent:

 public class Person {…}
 public class Person extends Object {…}

CMSC 341 Java Review 14

Polymorphism

  If Employee is a class that extends Person,
an Employee “is-a” Person and
polymorphism can occur.

Person [] p = new Person[2];

p[0] = new Employee();
p[1] = new Person();

Creates an array of
Person references

CMSC 341 Java Review 15

Polymorphism (cont.)

  However, a Person is not necessarily an Employee. The
following will generate a compile-time error.
 Employee e = new Person();

  Polymorphism requires general class on left of
assignment operator, and specialized class on right.

  Casting allows you to make such an assignment
provided you are confident that it is ok.

public void convertToPerson(Object obj)
{
 Person p = (Person) obj;
}

CMSC 341 Java Review 16

Abstract Classes and Methods

  Java also has abstract classes and methods. If a
class has an abstract method, then it must be
declared abstract.

 public abstract class Node{

 String name;

 public abstract void type();

 public String toString(){ return name;}
 public Node(String name){

 this.name = name;

 }

 }

Abstract methods have no
implementation.

CMSC 341 Java Review 17

More about Abstract Classes

  Abstract classes can not be instantiated.
// OK because n is only a reference.
 Node n;

// OK because NumberNode is concrete.
 Node n = new NumberNode(“Penta”, 5);

// Not OK. Gives compile error.
 Node n = new Node(“Name”);

CMSC 341 Java Review 18

Inner Classes
  It’s possible to define a class within another class

definition. This is called an inner class and is a
technique we’ll use in this course.

  There are many reasons to define an inner class
and many rules regarding inner classes.

  For our purposes, we’re interested in code-hiding.
Users of the outer class can’t access a private inner
class.

  The inner class has a “link” to the outer class.
  The inner class can access members of the outer class

CMSC 341 Java Review 19

Inner Class Example
public class Package {
 private boolean rushOrder;
 private String label;
 private class Contents {
 private int value;
 public Contents (int value) {this.value = value;}
 public int getValue() { return value; }
 }
 private class Destination {
 private String address;
 public Destination(String whereTo) { address = whereTo; }
 public String getAddress() { return addres; }
 public String toString()
 {
 return label + “sent to “ + address;
 }
 }
}

CMSC 341 Java Review 20

Interfaces

  An interface is like class without the
implementation. It contains only
  public, static and final fields, and
  public and abstract method headers (no body).

  A public interface, like a public class, must be
in a file of the same name.

CMSC 341 Java Review 21

Interface Example

  The methods and fields are implicitly public
and abstract by virtue of being declared in an
interface.!
public interface Employable

{
 void raiseSalary(double d);

 double getSalary();
}

CMSC 341 Java Review 22

Interfaces (cont.)

  Many classes may implement the same
interface. The classes may be in completely
different inheritance hierarchies.

  A class may implement several interfaces.
 public class TA extends Student

implements Employable

 {

 /* Now TA class must implement the getSalary

 and the raiseSalary methods here */

 }

CMSC 341 Java Review 23

The Collections Framework

  Is a collection of interfaces, abstract and
concrete classes that provide generic
implementation for many of the data
structures you will be learning about in this
course.

CMSC 341 Java Review 24

Generics

  A class that is defined with a parameter for a type is
called a generic or a parameterized class.

CMSC 341 Java Review 25

Collection <E> Interface

  The E represents a type and allows the user
to create a homogenous collection of objects.

  Using the parameterized collection or type,
allows the user to retrieve objects from the
collection without having to cast them.

Before:
List c = new ArrayList();
c.add(new Integer(34));
Integer i = (Integer) c.get(0);

After:
List<Integer> c = new ArrayList<Integer>();
c.add(new Integer(34));
Integer i = c.get(0);

CMSC 341 Java Review 26

Implementing Generic Classes

  In the projects for this course, you will be
implementing your own parameterized
generic classes.

  The Cell class that follows is a small example
of such a class.

CMSC 341 Java Review 27

Generic Cell Example
public class Cell< T >
{
 private T prisoner;
 public Cell(T p)
 { prisoner = p; }
 public T getPrisoner(){return prisoner; }
}

public class CellDemo
{
 public static void main (String[] args)
 {
 // define a cell for Integers
 Cell<Integer> intCell = new Cell<Integer>(new Integer(5));

 // define a cell for Floats
 Cell<Float> floatCell = new Cell<Float>(new Float(6.7));

 // compiler error if we remove a Float from Integer Cell
 Float t = (Float)intCell.getPrisoner();
 System.out.println(t);
 }
}

CMSC 341 Java Review 28

Dont’s of Generic Programming

  You CANNOT use a type parameter in a constructor.
T obj = new T();

  You CANNOT create an array of a generic type.

T [] array = new T[5];

CMSC 341 Java Review 29

Do’s of Generic Programming

  The type parameter must always represent a reference data type.
  Class name in a parameterized class definition has a type parameter

attached.
 class Cell<T>

  The type parameter is not used in the header of the constructor.

 public Cell()

  Angular brackets are not used if the type parameter is the type for a
parameter of the constructor.
 public Cell3(T prisoner);

  However, when a generic class is instantiated, the angular brackets are
used
 List<Integer> c = new ArrayList<Integer>();

CMSC 341 Java Review 30

The Arrays class

  The java.util.Arrays class is a utility class that
contains several static methods to process
arrays of primitive and reference data.
  binarySearch – searches sorted array for a

specific value
  equals – compares two arrays to see if they

contain the same elements in the same order
  fill – fills an array with a specific value
  sort – sorts an array or specific range in array in

ascending order according to the natural ordering
of elements

CMSC 341 Java Review 31

Natural Order

  The natural order of primitive data types is
known. However, if you create an ArrayList
or Array of some object type, how does the
sort method know how to sort the array?

  To be sorted, the objects in an array must be
comparable to each other.

CMSC 341 Java Review 32

The Comparable<T> Interface
  The Comparable<T> interface defines just one method

to define the natural order of objects of type T

public interface java.lang.Comparable<T>
 {
 int compareTo(T obj);

 }

  compareTo returns
  a negative number if the calling object precedes obj
  a zero if they are equal, and
  a positive number if obj precedes the calling object

CMSC 341 Java Review 33

Comparable Example
import java.util.*;
public class Fraction implements Comparable<Fraction>
{
 private int n;
 private int d;
 public Fraction(int n, int d){ this.n = n; this.d = d;}
 public int compareTo(Fraction f)
 {
 double d1 = (double) n/d;
 double d2 = (double)f.n/f.d;
 if (d1 == d2)
 return 0;
 else if (d1 < d2)
 return -1;
 return 1;
 }
 public String toString() { return n + “/” + d; }
}

Casting required
for floating point
division

CMSC 341 Java Review 34

Sort Example

public class FractionTest
{
 public static void main(String []args)
 {
 Fraction [] array = {new Fraction(2,3),
 new Fraction (4,5), new Fraction(1,6);
 Arrays.sort(array);
 for(Fraction f :array)
 System.out.println(f);
 }
}

CMSC 341 Java Review 35

Bounding the Type

  You will see in the API a type parameter defined as
follows <? extends E>. This restricts the parameter
to representing only data types that implement E,
i.e. subclasses of E

 boolean addAll(Collection<? extends E> c)

CMSC 341 Java Review 36

Bounding Type Parameters

  The following restricts the possible types that
can be plugged in for a type parameter T.

public class RClass<T extends Comparable<T>>

  "extends Comparable<T>" serves as a bound on the type
parameter T.

  Any attempt to plug in a type for T which does not implement
the Comparable<T> interface results in a compiler error
message

CMSC 341 Java Review 37

More Bounding

  In the API, several collection classes contain
<? super T> in the constructor. This bounds
the parameter type to any class that is a
supertype of T.

TreeSet(Comparable<? super T> c)

CMSC 341 Java Review 38

Generic Sorting

public class Sort
{
 public static <T extends Comparable<T>>
 void bubbleSort(T[] a)
 {
 for (int i = 0; i< a.length - 1; i++)
 for (int j = 0; j < a.length -1 - i; j++)
 if (a[j+1].compareTo(a[j]) < 0)
 {
 T tmp = a[j];
 a[j] = a[j+1];
 a[j+1] = tmp;
 }
 }
}

CMSC 341 Java Review 39

Generic Sorting (cont.)

  Given the following:
class Animal implements Comparable<Animal> { ...}

class Dog extends Animal { ... }

class Cat extends Animal { ... }

  Now we should be able to sort dogs if contains the compareTo
method which compares animals by weight.

  BUT… bubblesort only sorts objects of type T which implements
Comparable<T>. Here the super class implements
Comparable…. HENCE, we can’t use bubblesort for Cats or
Dogs

  New and improved sort on next page can handle sorting Dogs
and Cats.

CMSC 341 Java Review 40

Generic Sorting (cont.)

public class Sort
{
 public static <T extends Comparable<? super T>>
 void bubbleSort(T[] a)
 {
 for (int i = 0; i< a.length - 1; i++)
 for (int j = 0; j < a.length -1 - i; j++)
 if (a[j+1].compareTo(a[j]) < 0)
 {
 T tmp = a[j];
 a[j] = a[j+1];
 a[j+1] = tmp;
 }
 }
}

