
CMSC 341

Making Java GUIs Functional

09/29/2007 CMSC 341 Events 2

More on Swing

� Great Swing demo at

http://java.sun.com/products/plugin/1.3.1_01a

/demos/jfc/SwingSet2/SwingSet2Plugin.html

� Just google for “SwingSet Demo Java”

� Now let’s learn how to make GUIs functional

09/29/2007 CMSC 341 Events 3

Last Class

• Learned about GUI
Programming.

• Created two GUIs

– UppercaseConverter

– Calculator

• Now we will make
them work.

09/29/2007 CMSC 341 Events 4

Events

� Java uses an Event Delegation Model.

� Every time a user interacts with a component

on the GUI, events are generated.

� Events are component-specific.

� Events are objects that store information like

� the type of event that occurred,

� the source of the event,

� the time of an event to name a few.

09/29/2007 CMSC 341 Events 5

Event Delegation Model

� Once the event is generated, then the event

is passed to other objects which handle or

react to the event, thus the term event

delegation.

� The objects which react to or handle the

events are called event listeners.

09/29/2007 CMSC 341 Events 6

Three Players

� Event source which generates the event

object

� Event listener which receives the event object

and handles it

� Event object that describes the event

09/29/2007 CMSC 341 Events 7

Revisiting our GUI

• We have already

created a GUI.

• How many

components?

• What are some

possible events?

09/29/2007 CMSC 341 Events 8

Example
• Click on UPPER

JButton

• Generates an

ActionEvent

• Event object is sent to

an ActionListener that is

registered with the

UPPER JButton

• ActionListener handles

in actionPerformed

method.

Event

public class Handler implements ActionListener

{

public void actionPerformed(ActionEvent e){

System.out.println(“Handling “ + e);

}

}

09/29/2007 CMSC 341 Events 9

Registering Listeners

� By having a class implement a listener

interface, it can contain code to handle an

event.

� However, unless an instance of the class is

registered with the component , the code will

never be executed. (Common novice error.)

09/29/2007 CMSC 341 Events 10

A Few More Java Events

� FocusEvent – component gains or loses focus

� MouseEvent – mouse is moved, dragged, pressed,
released or clicked

� WindowEvent – window is iconified, deiconified,
opened or closed

� TextEvent – text is modified

� KeyEvent – key is pressed, depressed or both

� ContainerEvent – components are added or
removed from Container

09/29/2007 CMSC 341 Events 11

Corresponding Listeners

� FocusEvent – FocusListener

� MouseEvent – MouseListener, MouseMotionListener

� WindowEvent – WindowStateListener,

WindowListener, WindowFocusListener

� TextEvent – TextListener

� KeyEvent – KeyListener

� ItemEvent- ItemListener

� ContainerEvent – ContainerListener

09/29/2007 CMSC 341 Events 12

Methods for Registering Listeners

� JButton

� addActionListener(ActionListener a)

� addChangeListener(ChangeListener c)

� addItemListener(ItemListener i)

� JList

� addListSelectionListener(ListSelectionListener l)

09/29/2007 CMSC 341 Events 13

UpperCaseConverter Example

� Goal
� When UPPER button is pressed, the text in the

textfield will be converted to upper case and
appended into the text area.

� When CLEAR button is pressed, both the text field
and the text area will be cleared.

� Things to consider to accomplish goal
� What type of events do we need to respond to?

� What listener interfaces do we need to
implement?

09/29/2007 CMSC 341 Events 14

Implementing an ActionListener

� Create as a separate class
� No access to data in JFrame

� Create as an inner class
� Access to JFrame data

� Must instantiate an object of this class to pass to
addActionListener method

� Make the JFrame implement the interface
� Access to JFrame data

� No need to instanciate an object of this class –
have the this reference

09/29/2007 CMSC 341 Events 15

Implementing ActionListener

import java.awt.event.*;

public class UpperCaseConverter extends JFrame implements
ActionListener

{ //omitted code

upper = new JButton("UPPER");

clear = new JButton("CLEAR");

upper.addActionListener(this);

clear.addActionListener(this);

//omitted code

public void actionPerformed(ActionEvent e){

Object obj = e.getSource();

if(obj == clear) System.out.println("Clear");

else if(obj == upper) System.out.println("Upper");

}

}

Good to test for expected

interaction as you go

09/29/2007 CMSC 341 Events 16

Implement Desired Behavior

public void actionPerformed(ActionEvent e)

{

Object obj = e.getSource();

if(obj == clear){

input.setText("");

output.setText("");

}

else if(obj == upper){

String result = input.getText();

StringBuffer buffer = new

StringBuffer(output.getText());

buffer.append(result.toUpperCase()+ "\n");

output.setText(buffer.toString());

}

}

JButtons, JLabels,

JTextFields and

JTextAreas all

have setText

method to change

their content

09/29/2007 CMSC 341 Events 17

Adding Functionality to the

Calculator
� Need capability for telling the number to go to

the left or right TextField.

� If click and holding the ctrl button then number
goes to the left, else the right.

� Need to be able to perform operations.

� Use the operators themselves for the operations.

� Need to be able to clear fields.

� Convert the equal sign to a C for clear.

09/29/2007 CMSC 341 Events 18

Slightly Modified GUI

• Notice the change

– Changed ‘=‘ to ‘C’

– Changed all

references from

“equals” to “clears”

in the code

09/29/2007 CMSC 341 Events 19

Add Listeners

plus.addActionListener(this);

minus.addActionListener(this);

mult.addActionListener(this);

div.addActionListener(this);

clears.addActionListener(this);

dot.addActionListener(this);

for(int i = 0; i < 10 ; i++)

numbers[i].addActionListener(this);

09/29/2007 CMSC 341 Events 20

Implementing the actionPerformed

Method

� First step is to implement the skeleton code

that will recognize the different locations that

are clicked.

� Second step is to code for clicks with ctrl key

pressed and not pressed.

� Third step is to add desired behavior.

� Helper methods would be helpful for the
converting of text to floats and for the various

arithmetic operations.

09/29/2007 CMSC 341 Events 21

More ActionEvent Methods

public void

actionPerformed(ActionEvent e)

{

String command = e.getActionCommand();

System.out.println(command);

int modifiers = e.getModifiers();

if(modifiers == ActionEvent.CTRL_MASK)

System.out.println("CTRL PRESSED");

}

09/29/2007 CMSC 341 Events 22

Problem

� Unfortunately, the code on the previous code
can not differentiate between a button click
with the control key down and a button click
alone.

� Next… try MouseListener interface.
� mousePressed

� mouseReleased

� mouseExited

� mouseClicked

� mouseEntered

09/29/2007 CMSC 341 Events 23

Changing to a MouseListener

� Change all ActionListener references to MouseListener references

� Remove actionPerformed method and add:

public void mouseClicked(MouseEvent e){

int button = e.getButton();

System.out.println(button);

String modifiers =

e.getMouseModifiersText(e.getModifiers());

System.out.println(modifiers);

}

public void mouseReleased(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

Determines which

button was pressed,

right or left

States whether

the Ctrl, Alt or

Shift buttons

were pressed

09/29/2007 CMSC 341 Events 24

Output

� After a left click then right click on a number output is:

1

Button1

3

Meta+Button3

� After left click then right click on a number with ctrl down output
is:

1

Ctrl+Button1

3

Meta+Ctrl+Button3

09/29/2007 CMSC 341 Events 25

mouseClicked Method

� Need to use getSource method to determine

which button was pressed.

� Easiest way to differentiate is left click and

right click

� Left click ->left operand

� Right click -> right operand

� For operators doesn’t matter

09/29/2007 CMSC 341 Events 26

Functional mouseClicked Method
public void mouseClicked(MouseEvent e){

int button = e.getButton(); JTextField dest = null;

if(button == 1) dest = operand1; //left click == left operand

if(button == 3) dest = operand2; //right click == right operand

Object src = e.getSource();

if(src == clears) clear(); //helper method

else if(src == mult||src == div||src == plus||src == minus)

performOperation(src); //helper method

else{

int i = 0;

for(; i < numbers.length; i++)

if(src == numbers[i]) break;

StringBuffer text = new StringBuffer(dest.getText());

if (src == dot) text.append(dot.getText());

else text.append(numbers[i].getText());

dest.setText(text.toString());

}

}

09/29/2007 CMSC 341 Events 27

Helper Method
private void performOperation(Object src){

float f1 = 0;float f2 = 0;

try {

f1 = Float.parseFloat(operand1.getText());

f2 = Float.parseFloat(operand2.getText());

}catch (NumberFormatException e){

output.setText("Invalid Number Format");

}

try{

float ans = 0;

if(src == mult) ans = f1 * f2;

else if(src == plus) ans = f1 + f2;

else if(src == minus) ans = f1 - f2;

else if(src == div) ans = f1 / f2;

output.setText(Float.toString(ans));

} catch (Exception e) {

output.setText("Invalid Operation");

}

}

09/29/2007 CMSC 341 Events 28

Adapter Classes

� In the previous implementation, we

implemented four empty methods.

� We can create a listener class that extends

its corresponding adapter class.

� Adapter classes provide the empty

implementation of all the methods in a

listener interface

� We only need to override the method(s)

whose behavior we want to influence.

09/29/2007 CMSC 341 Events 29

Anonymous Inner Classes

� Adapter classes are often implemented as

anonymous inner classes.

mult.addListener(new MouseAdapter(){

public void mouseReleased(){

// specialized code just for mult

// that will only be executed when mouse is

// released on the ‘x’ JButton

}

});

