CMSC 341

Making Java GUIs Functional

More on Swing

Great Swing demo at

Just google for “SwingSet Demo Java”
Now let’s learn how to make GUIs functional

09/29/2007 CMSC 341 Events

‘ [Last Class

Convert to Upper Case |Z||E|E|

‘ UPPER H CLEAR ‘

e [.earned about GUI

Programming.

e Created two GUIs
— UppercaseConverter - o ——
— Calculator

e Now we will make
them work.

09/29/2007 CMSC 341 Events

Events

Java uses an Event Delegation Model.

Every time a user interacts with a component
on the GUI, events are generated.

Events are component-specific.
Events are objects that store information like
o the type of event that occurred,

a the source of the event,
o the time of an event to name a few.

09/29/2007 CMSC 341 Events

Event Delegation Model

Once the event is generated, then the event
IS passed to other objects which handle or
react to the event, thus the term event
delegation.

The objects which react to or handle the
events are called event listeners.

09/29/2007 CMSC 341 Events

Three Players

Event source which generates the event
object

Event listener which receives the event object
and handles it

Event object that describes the event

09/29/2007 CMSC 341 Events

‘ Revisiting our GUI

* We have already
created a GUL

* How many
components’?

 What are some
possible events?

Convert to Upper Case

Enter text -=

UPPER

CLEAR

09/29/2007

CMSC 341 Events

‘ Example

e Click on UPPER R T
JButton

e (Generates an
ActionEvent

* Event object is sent to

an ActionListener that 1s Enter e |

registered with the \v

UPPER JButton public class Handler implements ActionListener
* ActionListener handles { public void acti\:)nPerformed(ActionEvent e){

1n actionPe I"fO rmed System.out.println(“Handling “ + e);

method. | }

09/29/2007 CMSC 341 Events 8

Registering Listeners

By having a class implement a listener
Interface, it can contain code to handle an
event.

However, unless an instance of the class is
registered with the component , the code will
never be executed. (Common novice error.)

09/29/2007 CMSC 341 Events

A Few More Java Events

— component gains or loses focus

— mouse Is moved, dragged, pressed,
released or clicked

— window is iconified, deiconified,
opened or closed

— text is modified
— key Is pressed, depressed or both

— components are added or
removed from Container

09/29/2007 CMSC 341 Events 10

Corresponding Listeners

FocusEvent —
MouseEvent —
WindowEvent —

TextEvent —
KeyEvent —
ltemEvent-
ContainerkEvent —

09/29/2007 CMSC 341 Events

11

Methods tor Registering Listeners

JButton

o addActionListener(ActionListener a)
o addChangelListener(Changelistener c)
o addltemListener(ltemListener i)

JList
o addListSelectionListener(ListSelectionListener)

09/29/2007 CMSC 341 Events 12

UpperCaseConverter Example

Goal

o When UPPER button is pressed, the text in the
textfield will be converted to upper case and
appended into the text area.

o When CLEAR button is pressed, both the text field
and the text area will be cleared.

Things to consider to accomplish goal
o What type of events do we need to respond to?

o What listener interfaces do we need to
implement?

09/29/2007 CMSC 341 Events 13

Implementing an ActionListener

Create as a separate class
o No access to data in JFrame

Create as an inner class
o Access to JFrame data

o Must instantiate an object of this class to pass to
addActionListener method

Make the JFrame implement the interface
o Access to JFrame data

o No need to instanciate an object of this class —
have the this reference

09/29/2007 CMSC 341 Events 14

Implementing ActionListener

import java.awt.event.¥*;

public class UpperCaseConverter extends JFrame implements
ActionListener

{ //omitted code
upper = new JButton ("UPPER");
clear = new JButton ("CLEAR") ;
upper.addActionListener (this);

Good to test for expected

interaction as you go
clear.addActionlListener (this);

//omitted code
public void actionPerformed (ActionEvent e) {

Object obj = e.getSource();

if (obj == clear) System.out.println("Clear");

else 1f(obj == upper) System.out.println("Upper");
}

09/29/2007 CMSC 341 Events 15

Implement Desired Behavior

public void actionPerformed (ActionEvent e)
{

Object obj = e.getSource(); JButtons, JLabels

if (obj == clear) {) JTextFields and
input.setText (""); - JTextAreas all
output.setText (""); have setText

} method to change

else if (obj == upper) { their content

String result = input.getText|();
StringBuffer buffer = new
StringBuffer (output.getText ());
buffer.append(result.toUpperCase()+ "\n");
output.setText (buffer.toString());

09/29/2007 CMSC 341 Events

16

Adding Functionality to the

Calculator

Need capability for telling the number to go to
the left or right TextField.

o If click and holding the ctrl button then number
goes to the left, else the right.

Need to be able to perform operations.
o Use the operators themselves for the operations.

Need to be able to clear fields.
o Convert the equal sign to a C for clear.

09/29/2007 CMSC 341 Events 17

Slightly Modified GUI

My Calculator (=][E][X]

e Notice the change
— Changed ‘=*to ‘C’
— Changed all
references from

“equals” to “clears”
in the code

09/29/2007 CMSC 341 Events 18

Add Listeners

plus.addActionlistener (this);
minus.addActionListener (this);
mult.addActionListener (this);
div.addActionListener (this);
clears.addActionListener (this);
dot.addActionListener (this);
for(int 1 = 0; 1 < 10 ; 1+4++4)

numbers|[1] .addActionlListener (this);

09/29/2007 CMSC 341 Events 19

Implementing the actionPerformed
Method

First step is to implement the skeleton code

that will recognize the different locations that
are clicked.

Second step is to code for clicks with ctrl key
pressed and not pressed.
Third step is to add desired behavior.

o Helper methods would be helpful for the
converting of text to floats and for the various
arithmetic operations.

09/29/2007 CMSC 341 Events 20

More ActionEvent Methods

public void
actionPerformed (ActionEvent e)

{

String command = e.getActionCommand() ;

System.out.println (command) ;

int modifiers = e.getModifiers();

1f (modifiers == ActionEvent.CTRL MASK)
System.out.println("CTRL PRESSED");

09/29/2007 CMSC 341 Events 21

Problem

Unfortunately, the code on the previous code
can not differentiate between a button click
with the control key down and a button click
alone.

Next... try MouseListener interface.
o mousePressed

a0 mouseReleased

o mouseExited

o mouseClicked

2 mouseEntered

09/29/2007 CMSC 341 Events 22

Changing to a MouseListener

Change all ActionListener references to MouseListener references
Remove actionPerformed method and add:
public void mouseClicked (MouseEvent e) {

int button = e.getButton|(); Determines which
\

System.out.println (button); button was pressed,
String modifiers = right or left
e.getMouseModifiersText (e.getModifiers()) ;

System.out.println(modifiers); \
} States whether

public voild mouseReleased (MouseEvent e){} the Ctrl, Alt or
public void mousePressed (MouseEvent e) {} Shift buttons
public void mouseEntered (MouseEvent e){} Were pressed
public void mouseExited (MouseEvent e) {}

09/29/2007 CMSC 341 Events 23

Output

After a left click then right click on a number output is:
1

Button1

3

Meta+Button3

After left click then right click on a number with ctrl down output
IS:

1

Ctrl+Button1

3

Meta+Ctrl+Button3

09/29/2007 CMSC 341 Events

24

mouseClicked Method

Need to use getSource method to determine
which button was pressed.

Easiest way to differentiate is left click and
right click

_eft click ->left operand
Right click -> right operand
~or operators doesn’'t matter

09/29/2007 CMSC 341 Events

25

Functional mouseClicked Method

public void mouseClicked (MouseEvent e) {
int button = e.getButton(); JTextField dest = null;

if (button == 1) dest = operandl; //left click == left operand
if (button == 3) dest = operand2; //right click == right operand
Object src = e.getSource();

if (src == clears) clear(); //helper method

else if(src == mult]||src == div||src == plus||src == minus)

performOperation(src); //helper method
else{
int i = 0;
for(; 1 < numbers.length; i++)
if (src == numbers|[i]) break;
StringBuffer text = new StringBuffer (dest.getText());
if (src == dot) text.append(dot.getText());
else text.append(numbers[i].getText());
dest.setText (text.toString());

09/29/2007 CMSC 341 Events 26

Helper Method

private void performOperation (Object src) {
float £f1 = 0;float £2 = 0;
try {
fl = Float.parseFloat (operandl.getText());
f2 = Float.parseFloat (operand2.getText ());
}catch (NumberFormatException e) {

output.setText ("Invalid Number Format");

}

try{
float ans = 0;
if (src == mult) ans = f1 * £2;
else if(src == plus) ans = fl + £2;
else if(src == minus) ans = fl1 - £2;
else if(src == div) ans = f1 / £2;

output.setText (Float.toString(ans));
} catch (Exception e) {

output.setText ("Invalid Operation");

09/29/2007 CMSC 341 Events

27

Adapter Classes

In the previous implementation, we
implemented four empty methods.

We can create a listener class that extends
its corresponding adapter class.

Adapter classes provide the empty
implementation of all the methods in a
listener interface

We only need to override the method(s)
whose behavior we want to influence.

09/29/2007 CMSC 341 Events

28

Anonymous Inner Classes

Adapter classes are often implemented as
anonymous inner classes.

mult.addListener (new MouseAdapter () {
public void mouseReleased () {
// specialized code just for mult
// that will only be executed when mouse is

// released on the “‘x’ JButton
}

}) g

09/29/2007 CMSC 341 Events

29

