
CMSC 341

Introduction to Trees

10/18/2004 2

Tree ADT
Tree definition

– A tree is a set of nodes.
– The set may be empty
– If not empty, then there is a distinguished node r, called

root and zero or more non-empty subtrees T1, T2, …
Tk, each of whose roots are connected by a directed
edge from r.

Basic Terminology
– Root of a subtree is a child of r. r is the parent.
– All children of a given node are called siblings.
– A leaf (or external) node has no children.
– An internal node is a node with one or more children

10/18/2004 3

More Tree Terminology
A path from node V1 to node Vk is a sequence of nodes such that Vi is the

parent of Vi+1 for 1 ≤ i ≤ k.
The length of this path is the number of edges encountered. The length of

the path is one less than the number of nodes on the path (k – 1 in this
example)

The depth of any node in a tree is the length of the path from root to the
node.

All nodes of the same depth are at the same level.
The depth of a tree is the depth of its deepest leaf.
The height of any node in a tree is the length of the longest path from the

node to a leaf.
The height of a tree is the height of its root.
If there is a path from V1 to V2, then V1 is an ancestor of V2 and V2 is a

descendent of V1.

10/18/2004 4

Tree Storage
A tree node contains:

– Element
– Links

• to each child

• to sibling and first child

10/18/2004 5

Binary Trees
A binary tree is a rooted tree in which no node can have more

than two children AND the children are distinguished as
left and right. (We will discuss the difference between
rooted trees and free trees later, when we study graphs)

A full BT is a BT in which every node either has two children
or is a leaf (every interior node has two children).

10/18/2004 6

FBT Theorem
Theorem: A FBT with n internal nodes has n + 1 leaf nodes.
Proof by induction on the number of internal nodes, n:

Base case: BT of one node (the root) has:
zero internal nodes
one external node (the root)

Inductive Assumption:
Assume all FBTs with up to and including n internal

nodes have n + 1 external nodes.

10/18/2004 7

Proof (cont)
Inductive Step (prove for n + 1):

– Let T be a FBT of n internal nodes.
– It therefore has n + 1 external nodes (Inductive Assumption)
– Enlarge T by adding two nodes to some leaf. These are

therefore leaf nodes.
– Number of leaf nodes increases by 2, but the former leaf

becomes internal.
– So,

• # internal nodes becomes n + 1,
• # leaves becomes (n + 1) + 1 = n + 2

10/18/2004 8

Proof (more rigorous)

Inductive Step (prove for n+1):
– Let T be any FBT with n + 1 internal nodes.
– Pick any leaf node of T, remove it and its sibling.
– Call the resulting tree T1, which is a FBT
– One of the internal nodes in T is changed to a external node in T1

• T has one more internal node than T1
• T has one more external node than T1

– T1 has n internal nodes and n + 1 external nodes (by inductive
assumption)

• Therefore T has (n + 1) + 1 external nodes.

10/18/2004 9

Perfect Binary Tree

A perfect BT is a full BT in which all leaves have the same
depth.

10/18/2004 10

PBT Theorem
Theorem: The number of nodes in a PBT is 2h+1-1, where h is

height.
Proof by induction on h, the height of the PBT:

Notice that the number of nodes at each level is 2l. (Proof
of this is
a simple induction - left to student as exercise)
Base Case:

The tree has one node; then h = 0 and n = 1.
and 2(h + 1) = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n

10/18/2004 11

Proof of PBT Theorem(cont)
Inductive Assumption:

Assume true for all trees with height h ≤ H
Prove true for H+1:
Consider a PBT with height H + 1. It consists of a root

and two subtrees of height H. Therefore, since the theorem is
true for the subtrees (by the inductive assumption since
they have height = H)
n = (2(H+1) - 1) for the left subtree

+ (2(H+1) - 1) for the right subtree
+ 1 for the root

= 2 * (2(H+1) – 1) + 1
= 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1. QED

10/18/2004 12

Other Binary Trees
Complete Binary Tree
A complete BT is a perfect BT except that the lowest level

may not be full. If not, it is filled from left to right.

Augmented Binary Tree
An augmented binary tree is a BT in which every unoccupied

child position is filled by an additional “augmenting” node.

10/18/2004 13

Path Lengths
The internal path length of a rooted tree is the sum of the

depths of all of its internal nodes.
The external path length of a rooted tree is the sum of the

depths of all the external nodes.
There is a relationship between the IPL and EPL of Full

Binary Trees.
If ni is the number of internal nodes in a FBT, then

EPL(ni) = IPL(ni) + 2ni

Example:
ni =
EPL(ni) =
IPL(ni) =
2 ni =

10/18/2004 14

Proof of Path Lengths
Prove: EPL(ni) = IPL(ni) + 2 ni by induction on number of

internal nodes
Base: ni = 0 (single node, the root)

EPL(ni) = 0
IPL(ni) = 0; 2 ni = 0 0 = 0 + 0

IH: Assume true for all FBT with ni < N
Prove for ni = N.

10/18/2004 15

Proof: Let T be a FBT with ni = N internal nodes.
Let niL, niR be # of internal nodes in L, R subtrees of T
then N = ni = niL + niR + 1 ==> niL < N; niR < N

So by IH:
EPL(niL) = IPL(niL) + 2 niL

and EPL (niR) = IPL(niR) + 2 niR

For T,
EPL(ni) = EPL(niL) + niL + 1 + EPL(niR) + niR + 1

By substitution
EPL(ni) = IPL(niL) + 2 niL + niL + 1 + IPL(niR) + 2 niR + niR + 1

Notice that IPL(ni) = IPL(niL) + IPL(niR) + niL + niR

By combining terms
EPL(ni) = IPL(ni) + 2 (niR + niL + 1)

But niR + niL + 1 = ni, therefore
EPL(ni) = IPL(ni) + 2 ni QED

10/18/2004 16

Traversal
Inorder

Preorder

Postorder

Levelorder

10/18/2004 17

Constructing Trees
Is it possible to reconstruct a BT from just one of its pre-

order, inorder, or post-order sequences?

10/18/2004 18

Constructing Trees (cont)
Given two sequences (say pre-order and inorder) is the tree

unique?

10/18/2004 19

Tree Implementations
What should methods of a tree class be?

10/18/2004 20

Tree class
template <class Object>

class Tree {

public:

Tree(const Object ¬Fnd);

Tree (const Tree &rhs);

~Tree();

const Object &find(const Object &x) const;

bool isEmpty() const;

void printTree() const;

void makeEmpty();

void insert (const Object &x);

void remove (const Object &x);

const Tree &operator=(const Tree &rhs);

10/18/2004 21

Tree class (cont)
private:

TreeNode<Object> *root;

const Object ITEM_NOT_FOUND;

const Object &elementAt(TreeNode<Object> *t) const;

void insert (const Object &x, TreeNode<Object> * &t) const;

void remove (const Object &x, TreeNode<Object> * &t) const;

TreeNode<Object> *find(const Object &x,

TreeNode<Object> *t) const;

void makeEmpty(TreeNode<Object> *&t) const;

void printTree(TreeNode<Object *t) const;

TreeNode<Object> *clone(TreeNode<Object> *t)const;

};

10/18/2004 22

Tree Implementations
Fixed Binary

– element
– left pointer
– right pointer

Fixed K-ary
– element
– array of K child pointers

Linked Sibling/Child
– element
– firstChild pointer
– nextSibling pointer

10/18/2004 23

TreeNode : Static Binary

template <class Object>

class BinaryNode {

Object element;

BinaryNode *left;

BinaryNode *right;

BinaryNode(const Object &theElement,
BinaryNode *lt,
BinaryNode *rt)

: element (theElement), left(lt), right(rt) {}

friend class Tree<Object>;

};

10/18/2004 24

Find : Static Binary
template <class Object>

BinaryNode<Object> *Tree<Object> ::

find(const Object &x, BinaryNode<Object> *t) const {

BinaryNode<Object> *ptr;

if (t == NULL)

return NULL;

else if (x == t->element)

return t;

else if (ptr = find(x, t->left))

return ptr;

else

return(ptr = find(x, t->right));

}

10/18/2004 25

Insert : Static Binary

10/18/2004 26

Remove : Static Binary

10/18/2004 27

TreeNode : Static K-ary
template <class Object>

class KaryNode {

Object element;

KaryNode *children[MAX_CHILDREN];

KaryNode(const Object &theElement);

friend class Tree<Object>;

};

10/18/2004 28

Find : Static K-ary
template <class Object>

KaryNode<Object> *KaryTree<Object> ::

find(const Object &x, KaryNode<Object> *t) const

{

KaryNode<Object> *ptr;

if (t == NULL)

return NULL;

else if (x == t->element)

return t;

else {

i =0;

while ((i < MAX_CHILDREN)

&& !(ptr = find(x, t->children[i])) i++;

return ptr;

}

}

10/18/2004 29

Insert : Static K-ary

10/18/2004 30

Remove : Static K-ary

10/18/2004 31

TreeNode : Sibling/Child
template <class Object>

class KTreeNode {

Object element;

KTreeNode *nextSibling;

KTreeNode *firstChild;

KTreeNode(const Object &theElement,
KTreeNode *ns,
KTreeNode *fc)

: element (theElement), nextSibling(ns),

firstChild(fc) {}

friend class Tree<Object>;

};

10/18/2004 32

Find : Sibling/Child
template <class Object>

KTreeNode<Object> *Tree<Object> ::

find(const Object &x, KTreeNode<Object> *t) const

{

KTreeNode<Object> *ptr;

if (t == NULL)

return NULL;

else if (x == t->element)

return t;

else if (ptr = find(x, t->firstChild))

return ptr;

else

return(ptr = find(x, t->nextSibling));

}

10/18/2004 33

Insert : Sibling/Child

10/18/2004 34

Remove : Sibling/Parent

