CMSC 341
Lecture 19

Announcements

Expect graded exams on Wed
Truncated office hours today (until 1:30)
Proj5 up today, example solution later

Constructing a Binary Heap

A BH can be constructed in O(n) time.
Suppose an array in arbitrary order. It can be put in heap
order in O(n) time.
— Create the array and store n elementsin it in arbitrary
order. O(n)
— Heapify the array
o dart a vertex i = év/20
— percolateDown(i)
* repeat for al verticesdown to i

BinaryHeap.C (cont)

t enpl at e <cl ass Conpar abl e>
voi d Bi nar yHeap<Conpar abl e>: : bui | dHeap() {
for(int i = currentSize/2; i >0; i--)
per col at eDown (i) ;

}

Performance of Construction

A CBT has 2" verticeson level h-1.
Onlevel h-1, at most 1 swap is needed per node.
Onlevel h-2, at most 2 swaps are needed.

Onlevel 0, at most h swaps are needed.
Number of swaps=S
_2h*0+2h1*1+2h2*2+ +20*h

= a 2'(h- 1) —ha 2 - a i2
= h(2h+1-1) - ((h-1)2h+1+2)

= 2™(h-(h-1))-h-2
=2M1h-2

Performance of Construction (cont)

But 2"1-h-2 = O(2))
Butn=1+2+4+.. +20=Qa 2
Therefore, n = O(2") -
So S=0(n)

A heap of n vertices can be built in O(n) time.

Heap Sort

Given nvalues, can sort in O(n log n) time (in place).
— Insert valuesinto array -- O(n)
— heapify -- O(n)
— repeatedly delete min -- O(lg n) ntimes
Using a min heap, this code sortsin reverse order. With a
max heap, it sortsin normal order.

for (i =n-1; i >=1; i--) {
x =findM n();
del eteM n();
Ai+1] = x;
}
Limitations

Binary heaps supporti nsert ,fi ndM n, del et eM n, and
const ruct efficiently.

They do not efficiently support the el d or mer ge operation
in which 2 PQs are merged into one. If P, and P, are of
size n; and n,, then the mergeisin O(n, + n,)

L eftist Heap

Supports
— findMin - 0(1)
— deleteMin --O(lg n)
— insert --O(lg n)
— construct -- O(n)
— merge --O(lg n)
Leftist Tree

A LT isabinary treein which at each vertex v, the path
length, d, fromVv’sright child to the nearest non-full vertex
isnot larger than that from the vertex’ sleft child to the

nearest non-full vertex.
An important property of leftist trees:

— At every vertex, the shortest path to anon-full vertex is

along the rightmost path.

— Suppose thiswas not true. Then, at the same vertex the
path on the left would be shorter than the path on the

right.

L eftist Heap

A leftist heap is aleftist tree in which the values in the
vertices obey heap order (the treeis partially ordered).

SinceaLH isnot necessarily aCBT we do not implement it
inan array. An explicit tree implementation is used.

Operations
— findMin -- return root value, same as BH
— deleteMin -- done using meld operation
— insert -- done using meld operation
— construct -- done using meld operation
Meld
Algorithm:

Meld (H1, H2) {
if ('root(H1) || (root_value(H1) > root_value(H2))
swap (H1, H2)
if (root(H1) '= NULL))
right(H1) <-- Meld(right(H1),H2)
if (left_length(H1) < right_length(H1)
swap(left(H1), right(H1);

Meld (cont)

Performance: O(lg n)

— therightmost path of each tree has at most dg(n+1)0
vertices. So O(Ig n) vertices will be involved.

Title:

leftist_meld_2.ps

Creator:

fig2dev Version 3.2 Patchlevel 0-beta2
Preview:

This EPS picture was not saved
with a preview included in it
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:

leftist_meld_3.ps

Creator:

fig2dev Version 3.2 Patchlevel 0-beta2
Preview:

This EPS picture was not saved
with a preview included in it.
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

L eftist Heap Operations

Other operations implemented in terms of Meld
— insert (item)
* makeiteminto a 1-vertex LH, X
o Meld(*this, X)
— deleteMin
» Meld(left subtree, right subtree)
— construct from N items
» make N LH fromthe N values, one element in each
» meld eachin
— oneat atime:
— use queue and build pairwise :

LH Construct

Algorithm:

— make N heaps each with one data value

— Queue Q;

— for (I=1; | <=N; I++)
Q.Enqueue(Hi);

— Heap H = Q.Dequeue();

— while (!Q.IsEmpty())
Q.Enqueue(meld(H,Q.Dequeue());
H = Q.Dequeue();

10

