
1

CMSC 341
Lecture 19

Announcements
Expect graded exams on Wed
Truncated office hours today (until 1:30)
Proj5 up today, example solution later

2

Constructing a Binary Heap
A BH can be constructed in O(n) time.
Suppose an array in arbitrary order. It can be put in heap

order in O(n) time.
– Create the array and store n elements in it in arbitrary

order. O(n)
– Heapify the array

• start at vertex i = n/2
– percolateDown(i)

• repeat for all vertices down to i

BinaryHeap.C (cont)
template <class Comparable>
void BinaryHeap<Comparable>::buildHeap() {

for(int i = currentSize/2; i >0; i--)
percolateDown(i);

}

3

Performance of Construction
A CBT has 2h-1 vertices on level h-1.
On level h-l, at most 1 swap is needed per node.
On level h-2, at most 2 swaps are needed.
…
On level 0, at most h swaps are needed.
Number of swaps = S

= 2h*0 + 2h-1*1 + 2h-2*2 + … + 20*h

=
= h(2h+1-1) - ((h-1)2h+1+2)
= 2h+1(h-(h-1))-h-2
= 2h+1-h-2

∑∑∑
===

−=−
h

i

i
h

i

i
h

i

i ihih
000

22)(2

Performance of Construction (cont)
But 2h+1-h-2 = O(2h)
But n = 1 + 2 + 4 + … + 2h =
Therefore, n = O(2h)
So S = O(n)

A heap of n vertices can be built in O(n) time.

∑
=

h

i

i

0

2

4

Heap Sort
Given n values, can sort in O(n log n) time (in place).

– Insert values into array -- O(n)
– heapify -- O(n)
– repeatedly delete min -- O(lg n) n times

Using a min heap, this code sorts in reverse order. With a
max heap, it sorts in normal order.

for (i = n-1; i >= 1; i--) {
x =findMin();
deleteMin();
A[i+1] = x;
}

Limitations
Binary heaps support insert, findMin, deleteMin, and
construct efficiently.

They do not efficiently support the meld or merge operation
in which 2 PQs are merged into one. If P1 and P2 are of
size n1 and n2, then the merge is in O(n1 + n2)

5

Leftist Heap
Supports

– findMin -- O(1)
– deleteMin -- O(lg n)
– insert -- O(lg n)
– construct -- O(n)
– merge -- O(lg n)

Leftist Tree
A LT is a binary tree in which at each vertex v, the path

length, dr, from v’s right child to the nearest non-full vertex
is not larger than that from the vertex’s left child to the
nearest non-full vertex.

An important property of leftist trees:
– At every vertex, the shortest path to a non-full vertex is

along the rightmost path.
– Suppose this was not true. Then, at the same vertex the

path on the left would be shorter than the path on the
right.

6

Leftist Heap
A leftist heap is a leftist tree in which the values in the

vertices obey heap order (the tree is partially ordered).
Since a LH is not necessarily a CBT we do not implement it

in an array. An explicit tree implementation is used.
Operations

– findMin -- return root value, same as BH
– deleteMin -- done using meld operation
– insert -- done using meld operation
– construct -- done using meld operation

Meld
Algorithm:

Meld (H1, H2) {
if (!root(H1) || (root_value(H1) > root_value(H2))

swap (H1, H2)
if (root(H1) != NULL))

right(H1) <-- Meld(right(H1),H2)
if (left_length(H1) < right_length(H1)

swap(left(H1), right(H1);
}

7

Meld (cont)
Performance: O(lg n)

– the rightmost path of each tree has at most lg(n+1)
vertices. So O(lg n) vertices will be involved.

Title:
leftist_meld_1.ps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

8

Title:
leftist_meld_2.ps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
leftist_meld_3.ps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

9

Leftist Heap Operations
Other operations implemented in terms of Meld

– insert (item)
• make item into a 1-vertex LH, X
• Meld(*this, X)

– deleteMin
• Meld(left subtree, right subtree)

– construct from N items
• make N LH from the N values, one element in each
• meld each in

– one at a time :
– use queue and build pairwise :

LH Construct
Algorithm:

– make N heaps each with one data value
– Queue Q;
– for (I=1; I <= N; I++)

Q.Enqueue(Hi);

– Heap H = Q.Dequeue();
– while (!Q.IsEmpty())

Q.Enqueue(meld(H,Q.Dequeue());
H = Q.Dequeue();

10

