CMSC 341 Lecture 19

Announcements

Expect graded exams on Wed Truncated office hours today (until 1:30) Proj5 up today, example solution later

Constructing a Binary Heap

A BH can be constructed in O(n) time.

Suppose an array in arbitrary order. It can be put in heap order in O(n) time.

- Create the array and store n elements in it in arbitrary order. O(n)
- Heapify the array
 - start at vertex $i = \lfloor n/2 \rfloor$
 - percolateDown(i)
 - repeat for all vertices down to i

BinaryHeap.C (cont)

```
template <class Comparable>
void BinaryHeap<Comparable>::buildHeap() {
  for(int i = currentSize/2; i >0; i--)
     percolateDown(i);
}
```

Performance of Construction

A CBT has 2^{h-1} vertices on level h-1.

On level h-l, at most 1 swap is needed per node.

On level h-2, at most 2 swaps are needed.

. . .

On level 0, at most h swaps are needed.

Number of swaps = S

$$= 2h*0 + 2^{h-1}*1 + 2^{h-2}*2 + \dots + 2^{0}*h$$

$$= \sum_{i=0}^{h} 2^{i} (h-i) = h \sum_{i=0}^{h} 2^{i} - \sum_{i=0}^{h} i 2^{i}$$

$$= h(2^{h+1}-1) - ((h-1)2^{h+1}+2)$$

$$= 2^{h+1}(h-(h-1))-h-2$$

$$= 2^{h+1}-h-2$$

Performance of Construction (cont)

But
$$2^{h+1}$$
-h-2 = O(2^h)
But $n = 1 + 2 + 4 + ... + 2^h = \sum_{i=0}^{h} 2^i$
Therefore, $n = O(2^h)$
So $S = O(n)$

A heap of n vertices can be built in O(n) time.

Heap Sort

Given n values, can sort in $O(n \log n)$ time (in place).

- Insert values into array -- O(n)
- heapify -- O(n)
- repeatedly delete min -- O(lg n) n times

Using a min heap, this code sorts in reverse order. With a max heap, it sorts in normal order.

```
for (i = n-1; i >= 1; i--) {
   x = findMin();
   deleteMin();
   A[i+1] = x;
}
```

Limitations

Binary heaps support insert, findMin, deleteMin, and construct efficiently.

They do not efficiently support the meld or merge operation in which 2 PQs are merged into one. If P_1 and P_2 are of size n_1 and n_2 , then the merge is in $O(n_1 + n_2)$

Leftist Heap

Supports

findMin
 deleteMin
 insert
 Construct
 Merge
 O(1)
 O(lg n)
 O(n)
 O(lg n)

Leftist Tree

A LT is a binary tree in which at each vertex v, the path length, d_{r} , from v's right child to the <u>nearest</u> non-full vertex is not larger than that from the vertex's left child to the nearest non-full vertex.

An important property of leftist trees:

- At every vertex, the shortest path to a non-full vertex is along the rightmost path.
- Suppose this was not true. Then, at the same vertex the path on the left would be shorter than the path on the right.

Leftist Heap

A *leftist heap* is a leftist tree in which the values in the vertices obey heap order (the tree is partially ordered).

Since a LH is not necessarily a CBT we do not implement it in an array. An explicit tree implementation is used.

Operations

```
    findMin
    deleteMin
    insert
    construct
    return root value, same as BH
    done using meld operation
    done using meld operation
    done using meld operation
```

Meld

Algorithm:

```
Meld (H1, H2) {
    if (!root(H1) || (root_value(H1) > root_value(H2) )
        swap (H1, H2)
    if (root(H1) != NULL))
        right(H1) <-- Meld(right(H1),H2)
    if (left_length(H1) < right_length(H1)
        swap(left(H1), right(H1);
    }</pre>
```

Meld (cont)

Performance: O(lg n)

- the rightmost path of each tree has at most $\lfloor \lg(n+1) \rfloor$ vertices. So O($\lg n$) vertices will be involved.

Title:

Interest metal_1.pe
Create:
Ings/bev reason 3.2 Patchlevel 0-beta2
Interest PS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PossScript printer, but not to
often types of printers.

Intide.

Intide.

Intide Intide (Intide) A particular of the parti

Inte:
Intel: Intel: A pos
Intel: A previous intel
Intel: A previous intel:

Leftist Heap Operations

Other operations implemented in terms of Meld

- insert (item)
 - make item into a 1-vertex LH, X
 - Meld(*this, X)
- deleteMin
 - Meld(left subtree, right subtree)
- construct from N items
 - make N LH from the N values, one element in each
 - meld each in
 - one at a time:
 - use queue and build pairwise :

LH Construct

Algorithm:

- make N heaps each with one data value
- Queue Q;
- for (I=1; I <= N; I++)

Q.Enqueue(Hi);

- Heap H = Q.Dequeue();
- while (!Q.IsEmpty())

Q.Enqueue(meld(H,Q.Dequeue());

H = Q.Dequeue();

Г	
1	
1	
1	
1	
1	
1	
L	
Г	
Γ	
Γ	
Γ	