
1

CMSC 341
Lecture 18

Announcements
Expect graded exams on Monday
Truncated office hours on Monday (until 1:30)

2

Priority Queues
Priority: some property of an object that allows it to be

prioritized WRT other objects (of the same type)
Priority Queue: homogeneous collection of Comparables with

the following operations (duplicates are allowed)
– void insert (const Comparable &x)
– void deleteMin()
– void deleteMin(Comparable &x) const
Comparable &findMin() const

– Construct from set of initial values
– bool isEmpty() const;
– bool isFull() const;
– void makeEmpty();

Priority Queue Applications
Printer management: the shorter document on the printer

queue, the higher its priority.
Jobs queue: users’ tasks are given priorities. System priority

high.
Simulations
Sorting

3

Possible Implementations
Use sorted list. Sort by priority upon insertion.

– findMin() --> Itr.retrieve()
– insert() --> list.insert()
– deleteMin() --> list.delete(1)

Use ordinary BST
– findMin() --> tree.findMin()
– insert() --> tree.insert()
– deleteMin() --> tree.delete(tree.findMin())

Use balanced BST
– guaranteed O(lg n) for AVL, Red-Black

Binary Heap
A binary heap is a CBT with the further property that at every

vertex neither child is smaller than the vertex, called
partial ordering.

Every path from the root to a leaf visits vertices in a non-
decreasing order.

4

Binary Heap Properties
For a node at index i

– its left child is at index 2i
– its right child is at index 2i+1
– its parent is at index i/2

No pointer storage
Fast computation of 2i and i/2

i << 1 = 2i
i >> 1 = i/2

Binary Heap Performance
Performance

– construction O(n)
– findMin O(1)
– insert O(lg n)
– deleteMin O(log n)

Heap efficiency results, in part, from the implementation
– conceptually a binary tree
– implementation in an array (in level order), root at

index 1

5

BinaryHeap.H
template <class Comparable>
class Binary Heap {
public:

explicit BinaryHeap(int capacity = BIG);
bool isEmpty() const;
bool isFull() const;
const Comparable & findMin() const;
void insert (const Comparable & x);
void deleteMin();
void deleteMin(Comparable & min_item);
void makeEmpty();

private:
int currentSize;
vector<Comparable> array;
void buildHeap();
void percolateDown(int hole);
};

BinaryHeap.C
template <class Comparable>
const Comparable & BinaryHeap::findMin() {

if (isEmpty()) throw Underflow();
return array[1];
}

6

Insert Operation
Must maintain

– CBT property (heap shape):
• easy, just insert new element at the right of the array

– Heap order
• could be wrong after insertion if new element is smaller than

its ancestors
• continuously swap the new element with its parent until parent

is not greater than it
– called sift up or percolate up

Performance O(lg n) worst case because height of CBT is
O(lg n)

BinaryHeap.C (cont)
template <class Comparable>
void BinaryHeap<Comparable>::insert(const Comparable &

x) {
if (isFull()) throw OverFlow();
int hole = ++currentSize;
// percolate up
for (; hole > 1 && x < array[hole/2]; hole /= 2)

array[hole] = array[hole/2];
// put x in hole
array[hole] = x;
}

7

Deletion Operation
Steps

– remove min element (the root)
– maintain heap shape
– maintain heap order

To maintain heap shape, actual vertex removed is last one
– replace root value with value from last vertex and

delete last vertex
– sift-down the new root value

• continually exchange value with the smaller child until no
child is smaller

BinaryHeap.C (cont)
template <class Comparable>
void BinaryHeap<Comparable>::deleteMin(Comparable

&minItem) {
if (isEmpty()) throw Underflow();
minItem = array[1];
array[1] = array[currentSize-];
percolateDown(1);
}

8

BinaryHeap.C (cont)
template <class Comparable>
void BinaryHeap<Comparable>::percolateDown(int hole); {

int child;
Comparable tmp = array[hole];
for (; hole*2 <= currentSize; hole = child) {

child= hole*2;
if (child!=currentSize&&array[child+1]<array[child])

child++;
if (array[child] < tmp)

array[hole] = array[child];
else break;
}

array[hole] = tmp;
}

