CMSC 341
Lecture 22

Announcements

Adjacency List

Keep list of adjacent vertices for each vertex.

— Array of lists of indices. Each element of array[i] isa
list of the indices of the vertices adjacent to vertexi.

— List of lists: Thei-th element of L is associated with
vertex v, and isaList L, of the elements of L adjacent
tov,.

— Listsin Array (NIL sentinels): Eachentry di,j] is
either the index of the j-th vertex adjacent to vertex | or
aNIL sentinel indicating end-of-list.

— Listsin Array (with valence array): Instead of using
NIL sentinelsto mark theend of thelist in the array, a
separate array Vaence is kept indicating the number of
entriesin each row of the array.

Adjacency Lists (cont.)

Storage requirement:

Performance: Array of List of Listsin Listsin
Lists Lists Array (NIL) Array (val)

getDegree

getInDegree

getOutDegree

getAdjacent

getAdjacentFrom

isConnected

Directed Acyclic Graphs

A directed acyclic graph is adirected graph with no cycles.
A partial order R onaset Sisabinary relation such that
— forall d S, aRaisfalse (irreflexive property)
— foral ab,cl S, if aRb and bRc then aRc istrue
(trangitive property)
To represent a partial order with aDAG:
— represent each member of S asavertex

— for each pair of vertices (a,b), insert an edge fromato b
if and only if aRb.

More Definitions

Vertex i isapredecessor of vertex j if and only if thereisa
path fromi to j.

Vertex i isan immediate predecessor if vertex | if and only if
(i,j) isan edge in the graph.

Vertex j isasuccessor of vertex i if and only if thereis a path
fromitoj.

Vertex j isan immediate predecessor if vertex i if and only if
(i,j) isan edge in the graph.

Topological Ordering

A topological ordering of the vertices of aDAG G=(V,E) isa
linear ordering such that, for verticesi,j1 V, ifiisa
predecessor of |, then i precedes| in the linear order.

O—0O—0-0 | 1O O O O

QO 00

Topological Sort

voi d TopSort(Graph G {
unsigned int counter =1 ;
Queue g = new Queue();
Vertex indegree[|V|];
for each Vertex v {
i ndegree[v] = getlnDegree(Vv);
if (indegree[v] == 0) g.enqueue(v); }
while (!q.isEmpty()){
v = q.dequeue();
Put v on the topol ogical ordering;
count er ++;
for each Vertex v adjacent fromv {
i ndegree[w] -=1;
if (indegree[w] ==0) q.enqueue(w);
}
}

if (counter <= GnunVertices())
declare an error -- G has a cycle
1

