
1

CMSC 341
Lecture 22

Announcements

2

Adjacency List
Keep list of adjacent vertices for each vertex.

– Array of lists of indices: Each element of array[i] is a
list of the indices of the vertices adjacent to vertex i.

– List of lists: The i-th element of L is associated with
vertex vi and is a List Li of the elements of L adjacent
to vi.

– Lists in Array (NIL sentinels): Each entry a[i,j] is
either the index of the j-th vertex adjacent to vertex I or
a NIL sentinel indicating end-of-list.

– Lists in Array (with valence array): Instead of using
NIL sentinels to mark theend of the list in the array, a
separate array Valence is kept indicating the number of
entries in each row of the array.

Adjacency Lists (cont.)
Storage requirement:
Performance: Array of List of Lists in Lists in

 Lists Lists Array (NIL) Array (val)

getDegree

getInDegree

getOutDegree

getAdjacent

getAdjacentFrom

isConnected

3

Directed Acyclic Graphs
A directed acyclic graph is a directed graph with no cycles.
A partial order R on a set S is a binary relation such that

– for all a∈S, aRa is false (irreflexive property)
– for all a,b,c ∈S, if aRb and bRc then aRc is true

(transitive property)
To represent a partial order with a DAG:

– represent each member of S as a vertex
– for each pair of vertices (a,b), insert an edge from a to b

if and only if aRb.

More Definitions
Vertex i is a predecessor of vertex j if and only if there is a

path from i to j.
Vertex i is an immediate predecessor if vertex j if and only if

(i,j) is an edge in the graph.
Vertex j is a successor of vertex i if and only if there is a path

from i to j.
Vertex j is an immediate predecessor if vertex i if and only if

(i,j) is an edge in the graph.

4

Topological Ordering
A topological ordering of the vertices of a DAG G=(V,E) is a

linear ordering such that, for vertices i,j ∈V, if i is a
predecessor of j, then i precedes j in the linear order.

Topological Sort
void TopSort(Graph G) {

unsigned int counter = 1 ;
Queue q = new Queue();
Vertex indegree[|V|];
for each Vertex v {

indegree[v] = getInDegree(v);
if (indegree[v] == 0) q.enqueue(v); }

while (!q.isEmpty()){
v = q.dequeue();
Put v on the topological ordering;
counter++;
for each Vertex v adjacent from v {

indegree[w] -=1;
if (indegree[w]==0) q.enqueue(w);
}

}
if (counter <= G.numVertices())

declare an error -- G has a cycle
}

5

 1 2 3 4 5

 6 7 8 9 10

