CMSC-341 Data Structures
Fall 2000 07 December 2000 Final Exam Review

The topics on the final exam will be drawn entirely from the following questions. The particular
questions may differ, but the topics will not.

Exam 1 Questions

1. Every question from Exam 1. And with a somewhat lower probability, from the exam review questions.

Exam 2 Questions

2. Every question from Exam 2. And with a somewhat lower probability, from the exam review questions.

Skip List

3. The following perfect skip-list is valid for p = % Draw an equivalent figure for p = %. What distribution of
node levels do you expect in a long list of this type?
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4. The expected asymptotic time performance for SkipList operations is O(lgn). There is a non-zero probability
that the performance could be as bad as O(n). Draw a 7 element SkipList, with int data values, that would
have such poor performance. Use a maximum node level of 4.

5. What maximum node size is appropriate for a SkipList suitable for storing up to 65,536 elements and with
associated probability ;.

6. Write pseudo-code for the find(const Comparable &) operation in a skip-list. Return the element found if
it’s in the list, ITEM NOT_FOUND otherwise.

7. Given a skip list (a drawing of one), indicate all the comparisons done in searching for a particular element.

8. Given a skip list with probability p and maximum node size M that contains N nodes. Show the expected
distribution of node sizes (i.e., the number of nodes at each size).
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Red-Black Tree

Note: You will be given the bottom-up or top-down rules for insertion in Red-black trees, as appropriate. The
bottom-up rules may be in the form of a flow-chart or pictorial cases. The top-down rules will be in the form
of pictorial cases.

Define Red-Black tree.
Define black height of a node in a red-black tree.

Show the result of inserting 2,1,4,5,9,3,6,7 into an initially empty Red-Black tree (show the tree at the end
of each insertion). Do this both bottom-up and top-down.

What is the “Big-Oh” performance (in terms of the number of nodes in the tree) for each operation find,
insert, and remove for Red-Black trees in the worst and average cases?

What property of Red-Black trees is most significant in explaining their “Big-Oh” behavior for the operations
find, insert, and remove.

Prove: in any red-black tree, no path from any node N to a leaf is more than twice as long as any other path
from N to any other leaf.

Prove: a red-black tree with n internal nodes has height h < 21g(n + 1).
Prove: in any red-black tree, at least half of the nodes on any path from root to a leaf must be black.
Prove: any red-black tree with n internal nodes has height h =< 21g(n + 1).

Prove: any red black with root 2 has at least n = 2P"(#*) — 1 internal nodes, where bh(z) is the black height of
node z.

B-Tree

Define B-Tree.

Give pseudo-code for search in a B-Tree of order M.

Given a drawing of a B-Tree, show the tree after insertion of a given element.
Given a drawing of a B-Tree, show the tree after deletion of a given element.
Draw a B-tree with M = 4 and L. = 3 containing the integer values 1 to 25.

Show the result of inserting the elements 1,3,7,9,5,11,13,6 into an initially empty B-tree having M = 3 and
L = 3. Show the tree at the end of each insertion. Assume the key of an element is equal to the element. By
definition, M is the order of the B-tree and L is the maximum number of elements that can be stored in a leaf
node.

Given some characteristics of an external storage problem:

(a) The number of items to be stored.

(b) The size (in bytes) of the key for each item.
(c)

(d)

The size (in bytes) of each item.
The block size (in bytes) of a disk block.

design a suitable B-tree (give its order, M and leaf size, L).
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Priority Queues and Heaps

Note: You will be given the algorithm for merging leftist heaps.

Define “priority queue.”

Define “binary heap.”

Define “null path length” in a binary tree.

Define “leftist binary tree.”

Define “leftist heap.”

Insertion and deletion in a binary heap is in O(lgn) on average. Explain why this is so.

Finding the minimum element in a binary heap (a min-heap) is in O(1) worst case. Explain why this is so.
Prove that the largest element in a min binary heap is a leaf.

For a min binary heap of N elements, what is the range of indices in which the maximum element will be found?

Describe, in English, an algorithm to find the largest element in a binary min-heap. What is the asymptotic
worst case performance of your algorithm?

The array representing a binary heap contains the following elements in the order 2,8,3,10,16,7,18,13, 15.
Show the order that results at each stage of inserting the element 4.

The array representing a binary heap contains the following elements in the order 2,8,3,10,16,7,18,13, 15.
Show the order that results at each stage of deleting the minimum element.

Describe, in English, the process for constructing a binary heap from a given set of initial values (i.e., heapify
an array of elements).

Construct a binary heap using the initial values 18,2,13,10,15,3,7,16,8. Show the heap at each stage of
construction.

Given a drawing of a binary tree, state if it is a leftist tree and if it is a leftist heap. Give reasons.
Prove that any complete binary tree is a leftist tree.

Prove: for any leftist tree having N vertices, the number of vertices, R, on the rightmost path to a non-full
vertex is given by
R < [lg(N +1)]

Describe how to do £indMin in a leftist heap.

Using the merge (aka meld) operation, describe how to do the insert and deleteMin operations for leftist
heaps.

Give pseudocode for constructing a leftist heap from a given set of values. Your code must construct a leftist
heap of N elements in O(N) time (not in O(N lg N)).

Given drawings of two leftist heaps H1 and H2, draw the leftist heap that results from the operation merge (H1,H2).
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AVL Trees

Graphs

Define graph, undirected graph, directed graph, and weighted graph, sparse graph.
Define path in a graph. Define length of a path in a graph.
Define the following:

(a) Connected, undirected graph.
(b) Strongly connected directed graph.
(c) Weakly connected directed graph.

Let G = (V, E) be an undirected graph with V' the set of vertices and E the set of edges. Let v1,v2,...,vp € V
be the members of V' and let ¢ = |E| be the cardinality of E. Prove:

P
Z degree(v;) = 2¢
i=1

Prove that in any undirected graph, the number of vertices of odd degree is even.

Write pseudo-code for breadth-first and depth-first traversals of undirected graphs. The code must be complete
and must fully describe the operations.

Describe, in English, any adjacency table graph implementation. How does the implementation differ for
directed and undirected graphs?

Describe, in English, any adjacency list graph implementation. How does the implementation differ for directed
and undirected graphs?

Given a drawing of a directed or of an undirected graph, show its representation as an adjacency matrix.

Draw the directed graph represented by the adjacency matrix given below. The rows/columns in the matrix corre-
spond to the vertices with labels A,B,C,D,E.

OO O O
O = O = =
OO O~ O
OO O O+
O = OO

Given a drawing of a directed or of an undirected graph, show its representation as an adjacency list.
Draw the directed graph represented by the adjacency list given below.

v[1] (Label

A) -—> 2 --> 5

v[2] (Label

B) -—>3 -—>5

v[3] (Label =C) --> 2 --> 4 --> 5

v[4] (Label D) --> 5

v[5] (Label

E) --> empty



59. Discuss the characteristics of the adjacency table and adjacency list implementations of graphs. Include storage
requirements and asymptotic worst-case performance of the operations:

Note: u and v are vertices in the graph

Degree (u) returns the degree of vertex u (undirected graphs)
InDegree(u) returns the indegree of vertex u (directed graphs)
OutDegree (u) returns the outdegree of vertex u (directed graphs)

AdjacentTo(u) returns a list of the vertices adjacent to u

AdjacentFrom(u) returns a list of the vertices adjacent from u

Connected(u,v) returns true if there is an edge between
vertices u and v, returns false otherwise

60. Consider the directed graph represented by the following adjacency matrix:

List the depth-first and breadth-first traversals of the graph beginning at vertex A. Repeat for vertex B. (Whenever
a new vertex is to be visited and there is more than one possibility, use the vertex labelled with the letter than comes
first in the alphabet.)

61. Define directed acyclic graph.
62. Define topological ordering of a directed acyclic graph.
63. Given a drawing of a graph, find all cycles.

64. Given a drawing of a directed acyclic graph, write the labels of its vertices in topological order. Explain how
you obtained the ordering.

65. Given a drawing of a directed graph along with the “discovery” and “finish” times of its vertices after a
depth-first search, write the labels of the graph in topological order. Explain how you obtained the ordering.

66. Given a drawing of a directed graph along with the “discovery” and “finish” times of its vertices after a depth-
first search, identify the type of each edge (tree, back, forward, or cross). The following test is relevant, with
d[v] the discovery time of vertex v and f [v] its finish time:

if (d[vi] = d[v2] - 1)
(v1,v2) is a tree edge

else if (d[v1] > d[v2] && f[vi] < £[v2])
(v1,v2) is a back edge

else if (d[v1] > d[v2] && flvi] > f£[v2])
(vl1,v2) is a cross edge

else // dlvi] < d[v2] - 1 && flvi] > f[v2]
(v1,v2) is a forward edge

Disjoint Set

67. Give the value of the expression 1g*(1024), where lg*(NV) is the iterated base-2 logarithm of N.
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Write pseudo-code to find the connected components of an undirected graph G = (V, E) using Union-Find
operations on the vertices.

Define Union-by- Weight heuristic.
Define Path-compression heuristic.

When both the union-by-weight and the path-compression heuristics are applied on disjoint sets totaling N
items, a sequence of M union-find operations can be done in O(M Ig"(N)) time. It is sometimes said that
under these conditions, union-find is done in constant time per operation. What does this mean? Why is it
true?

In an uptree with root z, let R(z) be the length of the longest path and let N = W (z) be the number of
vertices (including ). Assume the uptree was created by means of multiple applications of the “union-by-size”
algorithm.

Prove: R(z) <lg(N)



