CMSC-341 Data Structures
Fall 2000 2 November 2000 Exam 2 Review

Questions on the exam will be of the same type and style as the following questions. Specific
details of most questions will differ from the questions below, but there will be no “surprise” or
“trick” questions on the exam.

Exam 1 Questions

1. Every question from Exam 1. With a somewhat lower likelihood, the exam 1 review questions.

Binary Tree

2. Suppose a binary tree is implemented in an array arr such that arr[i] contains the element of the node in
the i’th level-order position in the tree. The level-order position is the position the element would occupy if
the tree were perfect. For example, the tree
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could be represented in the array as:

index 0 1 2 3 4 5 6
value # A B C # E D #

~

where # represents an unfilled array slot.
Using that representation of a BT
(a) write a C++ function
template <class Comparable>
int depth(Vector<Comparable> & tree_array);
that returns the depth of the tree.
(b) write a C++ function

template <class Comparable>
void postorder(Vector<Comparable> & tree_array);

that does a post-order traversal of the tree.  You may assume the existence of a template function
void visit(const Comparable &).
(c) write a C++

template <class Comparable>
int TPL(Vector<Comparable> & tree_array) ;

that returns the total path length (sum of the depths of all nodes) of the tree.
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Given the existence of the BinaryNode class (defined on page 4), write a function

template <class Comparable>
int NPL(BinaryNode<Comparable> *) ;

that returns the null path length of the given node. You may assume that the caller of the function has access to
the public methods of BinaryNode.

Hash Tables

Name two desirable properties of a good hash function.

What is a “collision” in a hash table?

What is the “clustering” problem in hash tables?

Describe the “division” and “multiplication” methods of generating hash values.
Describe the “separate chaining” and “open addressing” collision resolution strategies.
What do the terms “linear probing” and “quadratic probing” mean?

An open-addressing hash function is a function:
h:Ux{0,1,..} = {0,1,...,m—1}

where m is the size of the hash table and U is the set of key values. Using a hash-table size of 10, and
U = {89,18,49, 58,69}, write a hash function that uses linear probing. Use that hash function to generate the
indices for the elements of U. Do the same using quadratic-probing.

The average time performance of insertion and searching operations on a hash table are O(1). This is much
better than the performance of a binary search tree for the same operations. Given this wonderful performance
of hash tables compared to binary search trees, when would you want to use a binary search tree instead of a
hash table?

In an open-addressing hash table using linear probing, the average number of probes for successful, S, and

unsuccessful, U, search are
1 1
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Suppose you want a hash table that can hold at least 1000 elements. You want successful searches to take no
more than 4 probes on average and unsuccessful searches to take no more than 50.5 probes on average. What is
the maximum load factor you can tolerate in your hash table? If table size is to be prime, what is the smallest
table you can use?

where A is the load factor of the table.
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AVL Trees

Note: You will be given the rules for insertion and deletion in AVL trees.
Define AVL tree.

Show the result of inserting 2,1,4,5,9,3,6,7 into an initially empty AVL tree (show the tree at the end of
each insertion).

Show the result of deleting a given node in the tree.

What is the “Big-Oh” performance (in terms of the number of nodes in the tree) for each operation find,
insert, and remove for AVL trees in the best, worst, and average cases?

What property of AVL trees is most significant in explaining their “Big-Oh” behavior for the operations find,
insert, and remove?

Prove that every complete binary tree is AVL-balanced.

Red-Black Tree

Note: You will be given the rules for insertion and deletion in Red-black trees.
Define Red-Black tree.

Show the result of inserting 2,1,4,5,9,3,6,7 into an initially empty Red-Black tree (show the tree at the end
of each insertion).

Show the result of deleting a given node in the tree.

What is the “Big-Oh” performance (in terms of the number of nodes in the tree) for each operation find,
insert, and remove for Red-Black trees in the best, worst, and average cases?

What property of Red-Black trees is most significant in explaining their “Big-Oh” behavior for the operations
find, insert, and remove.

Splay Tree

Note: You will be given the rules for insertion and deletion in Splay trees.
Define Splay tree.

Show the result of inserting 2,1,4,5,9,3,6,7 into an empty Splay tree (show the tree at the end of each
insertion).

Show the result of deleting a given node in the tree.
What does the following statement mean?

“a splay tree has O(nlg n) amortized performance over sequences of insert, remove, and find
operations”

In particular, what does 'n’ mean?



Definition of BinaryNode Class

template <class Comparable>
class BinaryNode
{
public:
BinaryNode(const Comparable & theElement,
BinaryNode * 1t, BinaryNode * rt);
BinaryNode(const BinaryNode & rhs);
“BinaryNode() ;
const BinaryNode & operator=(const BinaryNode & rhs);

BinaryNode * getLeftChild();
BinaryNode * getRightChild();
const Comparable & getElement();
private:
Comparable _element;
BinaryNode * _left;
BinaryNode * _right;
s



