CMSC-341 Data Structures
Fall 2000 6 October 2000 Exam 1 Review

Questions on the exam will be of the same type and style as the following questions. Specific
details of most questions will differ from the questions below, but there will be no “surprise” or
“trick” questions on the exam.

Asymptotic Analysis
1. Define “Big Oh,” “Big Omega,” and “Big Theta.” Use formal, mathematical definitions.

2. Number these functions in ascending “Big Oh” order:

Number Big Oh
O(n?)
O(n*logn)
o(1)
O(log’ ' n)
O™
O(n2.01)
o@2")
O(logn)
O(n)
O(nlogn)
O(nlog® n)

3. Prove:

Let T1 (z) = O(f(x)) and To(x) = O(g(x)). Prove T (x) + To(x) = O(max(f(z), g(x)))
Prove: O(cf(x)) = O(f(x)), where ¢ is a positive constant.
Let T1(n) = O(f(n)) and Tx(n) = O(g(n)). Prove T1(n)T>(n) = O(f(n)g(n))

Prove 2! = O(2")

Show the following using one or more of the theorems in questions 4, 5, 6 and 7. Be explicit and mention each of
the theorems that applies.

e

(a) n?+2n =0(n?)
(b) n? —3n = 0O(n?)
(c) n® +98 =0(n?)

9.

10.

11.

12.

13.

The following C++ function computes the maximum contiguous subsequence sum of elements in the given
vector.

int maxSubSum2 (const vector<int> & a)

{
int maxSum = 0;
for (int i = 0; i < a.size(); i++)
{
int thisSum = 0;
for (int j = i; j < a.size(); j++)
{
thisSum += a[j];
if (thisSum > maxSum)
maxSum = thisSum;
}
}
return maxSum;
}

What is the Big-Oh asymptotic time performance of this function, worst-case, as a function of the vector size
N?

The following C++ function computes Y"1 | 43

int sum (int N)

{
int partialSum;
partialSum = O;
for (int 1 = 1; i <= N; i++)
partialSum += i * i * i;
return partialSum;
3

What is the Big-Oh asymptotic time performance of this function, worst-case, as a function of the argument
N?

C++, ADTs, OOP

What does it mean when a C++ member function is declared to be const? For example, int foo(float)
const;

The following C++ function returns a reference, but it’s not a good idea. Why not?
int & Foo ()
{

int temp = 5;

return temp;

3

Rewrite the following C++ function as a template function which can take any (identical) type reference for x
and y and return the appropriate type.

int Foo (int & x, int & y)
{

int temp;

temp = Xx;

X =7Y;

y = temp;

return x + y;

3

Show how the function would be called with £ and g as arguments in:

{
float f
float g

’

1.2
3.7;

// call to Foo with f and g as arguments is:

3

14. The text uses template parameters Object and Comparable. Explain what is meant by each.

15.

16.

17.

Consider the following ADT for Set:

e A Set is a homogeneous collection of elements with no duplicates.
e The operations are:

— bool isEmpty() - returns true if this Set contains no elements.
— bool isFull() - returns true if this Set can accept no more elements.

— bool insert(Element e) -inserts e into this Set given that the no-duplicate property will not be violated
and this Set is not full. Returns true if the operation succeeds.

Define the C++ class Set such that the elements are stored in a normal C array. Do not implement Set, just define
it. Show relevant data members and describe their meaning. Assume the elements are of type Object.

Define two classes in enough detail to show an example of composition (also known as aggregation or the
HAS-A relationship). Do not implement the classes.

Stacks and Queues

Please see the definition of Stack on page 9 and of Queue on page 10. These are the definitions from the text
with minor modifications noted.

Suppose that q is an object of the Queue class and was constructed as
Queue<char> q; // Queue of size 5, initially empty

For the following problems, assume that q is initially empty. Show the contents of element and the values of
data members front and back initially and after each statement has executed. Indicate any errors that occur.

18.

19.

20.

(a) initial: front= back=

q.enqueue(’A’); _ _ _ _ _ front= back=
q.enqueue(’B’); _ _ _ _ _ front= back=
q.enqueue(’C’); _ _ _ _ _ front= back=
char ch = g.Dequeue(}; _ _ _ _ _ front= back=
q.enqueue(ch); _ _ _ _ _ front= back=
(b) initial: _ _ _ _ _ front= back=
q.enqueue(’X’); _ _ _ _ _ front= back=
q.enqueue(’Y’); _ _ _ _ _ front= back=
q.enqueue(’Z2’); _ _ _ _ _ front= back=
while (!q.Empty())
{
char ch = q.Dequeue(); _ _ _ _ _ front= back= // each time
}
(c) initial: _ _ _ _ _ front= back=

char ch = ’q’;
=1; i <= 3; ++i) // show result for each iteration

for (int i
{
q.enqueue(ch); _ _ _ _ _ front= back=
ch++; _ _ _ _ _ front= back=
q.enqueue(ch); _ _ _ _ _ front= back=
q.Dequeue(); _ _ _ _ _ front= back=
}

Use the given operations for Stack for this problem. Write a C++ function

template <class Object>
Stack<Object> copyStack(Stack<Object> & stk)

that returns a Stack containing the elements of stk, in the same order as in stk.

Use the given operations for Queue and Stack for this problem.

Write a C++ program that determines if a given string is a palindrome (i.e. reads the same forward and back-
ward). Your program should print (to cout) “palindrome” if the string is a palindrome and “not-palindrome”
if it is not. You may assume that the string to be tested is initially stored in a null-terminated array of char.
You are to push each character onto a stack and enqueue it onto a queue. The test is to use only operations
on the queue and the stack.

Describe (pseudo-code is fine) how the operations isEmpty, pop, and push are implemented in the text’s array
implementation of Stack (shown on page 9).

21.

22.

23.

24.

25.

26.

Describe (pseudo-code is fine) how the operations isEmpty, pop, and push are implemented in the List-based
implementation of Stack given in the lecture notes.

Describe the advantages and disadvantages of the text’s array and the lecture note’s list implementations of
the stack ADT. Consider the asymptotic behavior for each of the operations isEmpty, pop, and push. Also
consider the storage requirements for each implementation.

Lists

Please refer to the definition of ListNode on page 10, List on page 11, and ListItr on page 11. Assume that
all the member functions of the classes have been defined and are available for your use. You do not have to
define them.

Suppose you have constructed a List named 1lst that may or may not have elements in it. Write valid C++
code to construct an iterator for 1st that is positioned at the last element. If 1st is empty, the iterator is to
be past end.

(a) Write a member function for List

template <class Object>
void List<0Object>::reversePrint(ostream & out)

that uses ListItrs to print the elements of the List to out in reverse order (from tail to head). The
elements are to be comma-separated and enclosed in “<>” delimiters.

(b) What is the “Big-Oh” asymptotic time performance of this method in best, worst, and average cases.
Please describe each of the cases.
Write a definition for splice, a new member function of the List class:

template <class Object>
bool List<Object>::splice (const List<Object>& 1st,
ListItr<Object> & pos)

This function “splices” the specified list 1st into this List object at the specified position (pos is a ListItr over

“this” List. splice returns false if pos is past end.

What is the worst-case Big-Oh asymptotic time performance of your method?

Example: Suppose 1st1 is (1,2,3,4,5) and 1st2 is (10,20,30). Suppose itr is constructed as 1lstl.first(),
and advanced twice so it is positioned at the “3” element. Then the expression lstl.splice(lst2,itr) returns

true and causes 1st1 to become (1,2,3,10,20,30,4,5)

Given two lists of lengths n1 and n2:
Ll = ($1,$2,"' 7'7;77,1)

L2 = (y17y27" '7yn2)

the shuffleMerge of L, and Ls is the new list

L3 = (x1,y1,%2,Y2," ")

Examples:

L1 =<1,2,3>; L2 = <4,5,6>; shuffleMerge ==> <1,4,2,5,3,6>
L1 = <1,2,3>; L2 = <4>; shuffleMerge ==> <1,4,2,3>
L1 =<1,2,3>; L2 = <>, shuffleMerge ==> <1,2,3>

Write a definition of:

template <class Object>
List<0Object>
List<0bject>::shuffleMerge(const List<Object> lst)

that returns a new List produced by the shuffle merge of this list with 1st. An empty list is returned if the
given lists are both empty.

. Fill in the following table of Big-Oh asymptotic time performance for the given operations on List (page 11).
Give your answers in terms of n, the number of elements in the list.

Operation Best Case Average Case Worst Case

insert

find

findPrevious

remove

makeEmpty

isEmpty

first

General Trees

. Define tree.

. For any tree T, define path in T', length of a path in T, height of a node in T', depth of a node in T', height of
T, and depth of T'.

. Know how to draw the binary tree (first child, next sibling) representation of a given general tree.
. Know how to draw the general tree represented by a given binary tree (first-child, next-sibling) representation.

. Prove: there are n — 1 edges in any tree with n nodes.

33.
34.
35.
36.
37.
38.
39.
40.
41.

42.

43.

44.

45.
46.

Binary Trees

Define binary tree, full binary tree, complete binary tree, and perfect binary tree.
Define internal node and external node of a rooted tree.

Define internal path length and external path length of a rooted tree.

Define augmented binary tree.

Prove: A perfect binary tree of height A has 2" leaf nodes.

Prove: A perfect binary tree of height A has 2°*! — 1 vertices.

Prove: A full binary tree with n; internal nodes has n; + 1 leaf nodes.

Prove: In any binary tree of n nodes, there are n + 1 “null pointers.”

Consider a binary tree that has n; internal nodes. Let E(n;) and I(n;) denote the external and internal path
lengths of the tree, respectively. Show that for a full binary tree, E(n;) = I(n;) + 2n;.

Prove: the internal path length of an augmented binary tree T with n internal nodes is
Iny=I(ng)+I(n —np—1)+n—1

where nr, is the number of internal nodes in the left subtree.
Suppose you have the following two traversal sequences from the same binary tree:

pre-order: ADF GHKLPQRWZ
in-order: GF HKDLAWRQPZ

Draw the tree.
Suppose you have the following two traversal sequences from the same binary tree:

post-order: F GHDALPQRZWEK
in-order: GF HKDLAWRQPZ

Draw the tree.

Binary Search Trees

Please see the definition of BinaryNode on page 13 and of BinarySearchTree on page 12.
Define binary search tree.

Write valid C++ code to complete the definition of the find member function of the BinarySearchTree class.
The function takes two arguments:

const Comparable & x the element to search for

BinaryNode<Comparable> * t pointer to the node at which to start the search.

If x is found in the tree, a pointer to its node is returned; otherwise return NULL (see definition of the
BinarySearchTree class on page 12).

template <class Comparable>

BinaryNode<Comparable> x*

BinarySearchTree<Comparable>::

find(const Comparable & x, BinaryNode<Comparable> *t) const

{
// write the body of the method

47. Describe how deletion is performed in a binary search tree. Mention all relevant cases.

48. Explain: the number of comparisons needed to build a binary search tree of n elements is O(n?) worst case
and O(nlgn) best case. Describe the best and worst cases.

49. For the following list of C++ keyword strings:
break, operator, if, typedef, else, case, while, do, return, unsigned, for, true, double, void

(a) Draw the binary search tree that results when the words are inserted into an initially empty tree in the order
given. Show the tree after each insertion. Assume that operator< for strings means “alphabetical order.”

(b) Show the sequences of keywords under pre-order, post-order, and in-order traversals of the tree.
50. Given the following binary search tree:

50
/\

/\ /\

5 20 58 91
/\ AN

3 8 37 60
/

/
24

Draw the binary search trees that result after each of the following operations or sequences of operations are
performed. Each problem below is separate and begins with the tree shown above.

(a) Insert 7
(b) Insert 7, 1, 55,29, and 19, in that order
(c) Delete 8
(d) Delete 8, 37, and 62, in that order
(e) Insert 7, Delete 8, Insert 59, Delete 60, Insert 92, Delete 50, in that order
51. Suppose you have the following traversal sequence from a binary search tree:
pre-order: LHD AFGKWRQPZ

Draw the tree.

92.

93.

94.
95.
96.

Give an example of a binary search tree situation in which the immediate predecessor of some node is not in
that node’s left subtree.

Give an example of a binary search tree situation in which the immediate successor of some node is not in that
node’s right subtree.

Write pseudocode for finding the immediate predecessor of a node in a binary search tree.
Write pseudocode for finding the immediate successor of a node in a binary search tree.

Prove that if a node in a binary search tree has two children, then its successor has no left child and its
predecessor has no right child.

Definition of Stack Class

Note: this is directly out of the text. The meanings of the operations are the same as in the text.

template <class Object>
class Stack

{

};

public:
explicit Stack(int capacity = 10);

bool isEmpty() const;
bool isFull() const;
const Object & top() const;

void makeEmpty();

void pop();

void push(const Object & x);
Object topAndPop();

private:
vector<Object> theArray;
int topOfStack;

Definition of Queue Class

Note: this differs from the text only in that the initial size is 5, not 10. The meanings of the operations are
the same as in the text.

template <class Object>
class Queue
{
public:
explicit Queue(int capacity = 5);

bool isEmpty() const;
bool isFull() const;
const Object & getFront() const;

void makeEmpty();
Object dequeue();
void enqueue(const Object & x);

private:
vector<Object> theArray;
int currentSize;
int front;
int back;

void increment(int & x);

};

Definition of ListNode Class
This definition is directly from the text.

template <class Object>
class ListNode

{
ListNode(const Object & theElement = Object(),
ListNode * n = NULL)
: element(theElement), next(n) { }
Object element;
ListNode *next;
friend class List<0Object>;
friend class ListItr<Object>;
s

10

Definition of List Class

This definition is directly from the text.

template <class Object>
class List

{
public:
List();
List(const List & rhs);
“List();
bool isEmpty() const;
void makeEmpty();
ListItr<0bject> zeroth() const;
ListItr<Object> first() const;
void insert(const Object & x, const ListItr<Object> & p);
ListItr<Object> find(const Object & x) const;
ListItr<Object> findPrevious(const Object & x) const;
void remove(const Object & x);
const List & operator=(const List & rhs);
private:
ListNode<Object> *header;
s

Definition of ListItr Class

This definition is directly from the text.

template <class Object>
class ListItr
{
public:
ListItr() : current(NULL) { }
bool isPastEnd() const
{ return current == NULL; }
void advance()
{ if(!'isPastEnd()) current = current->next; }
const Object & retrieve() comnst
{ if(isPastEnd()) throw BadIterator();
return current->element; }
private:
ListNode<Object> *current; // Current position
ListItr(ListNode<Object> *theNode)
: current(theNode) { }

friend class List<Object>; // Grant access to constructor

};

11

Definition of BinarySearchTree Class
This definition is directly from the text.

template <class Comparable>

class BinarySearchTree

{

public:
explicit BinarySearchTree(const Comparable & notFound);
BinarySearchTree(const BinarySearchTree & rhs);
“BinarySearchTree();

const Comparable & findMin() comnst;

const Comparable & findMax() comnst;

const Comparable & find(const Comparable & x) const;
bool isEmpty() const;

void printTree() const;

void makeEmpty();
void insert(const Comparable & x);
void remove(const Comparable & x);

const BinarySearchTree & operator=(const BinarySearchTree & rhs);

private:
BinaryNode<Comparable> *root;
const Comparable ITEM_NOT_FOUND;

const Comparable & elementAt(BinaryNode<Comparable> *t) const;

void insert(const Comparable & x, BinaryNode<Comparable> * & t) const;

// void remove(const Comparable & x, BinaryNode<Comparable> * & t) const;
void remove(const Comparable & x, BinaryNode<Comparable> * & t);
BinaryNode<Comparable> * findMin(BinaryNode<Comparable> *t) const;
BinaryNode<Comparable> * findMax(BinaryNode<Comparable> *t) const;
BinaryNode<Comparable> * find(const Comparable & x, BinaryNode<Comparable> *t) const;
void makeEmpty(BinaryNode<Comparable> * & t) const;

void printTree(BinaryNode<Comparable> *t) const;

BinaryNode<Comparable> * clone(BinaryNode<Comparable> *t) const;

12

Definition of Binarynode Class
This definition is directly from the text.

template <class Comparable>
class BinaryNode

{
Comparable element;
BinaryNode *left;
BinaryNode *right;
BinaryNode(const Comparable & theElement,
BinaryNode *1t, BinaryNode *rt)
: element(theElement), left(1t), right(rt) { }
friend class BinarySearchTree<Comparable>;
s

13

