CMSC 341

Inheritance and the Collection classes

Inheritance in Java

= Inheritance is implemented using the keyword

extends.
public class Employee extends Person

{

//Class definition goes here - only the
//implementation for the specialized behavior

}
= A class may only inherit from only one superclass.

= If a class is not derived from a super class then it is
derived from java.lang.Object. The following two
class declarations are equivalent:

public class Person {..}
public class Person extends Object {..}

8/03/2007 UMBC CMSC 341 Java 3

‘ Polymorphism

= If Employee is a class that extends Person,
an Employee “is-a” Person and
polymorphism can occur.

Creates an array of
[Person references

Person [] p = new Person[Z];
p[0] = new Employee()

pll] = new Person();

8/03/2007 UMBC CMSC 341 Java 3

‘ Polymorphism (cont.)

= However, a Person is not necessarily an Employee. The
following will generate a compile-time error.
Employee e = new Person();

= Like C++, polymorphism requires general class on left of
assignment operator, and specialized class on right.

= Casting allows you to make such an assignment
provided you are confident that it is ok.

public void convertToPerson (Object obj)

{

Person p = (Person) obj;

8/03/2007 UMBC CMSC 341 Java 3 4

‘ Virtual Method Invocation

= In Java, virtual method invocation is automatic. At
runtime, the JVM determines the actual type of
object a reference points to. Then, the

JVM selects the correct overridden method for it.

= Supposing the Employee class overrides the
toString method inherited from the Person class,
then the foString method of the derived class,
Employee, is invoked even though the reference is a
Person reference.

Person p = new Employee;

p.toString() ; - Invokes the foString method
of the Employee class

8/03/2007 UMBC CMSC 341 Java 3 5

What is inherited by the subclass?

= All fields are inherited. Giving fields in super
classes protected access allows methods of
subclasses to reference the fields.

= All methods are inherited except for
constructors.

= Inherited methods may be overloaded or
overridden.

8/03/2007 UMBC CMSC 341 Java 3

‘ Constructors and Inheritance

= The superclass constructors are always
called by the constructors of the subclasses,
either implicitly or explicitly.

= To explicitly call the superclass constructor,
in the first line of the subclass constructor
make a call to the super method passing the
appropriate parameters for the desired
constructor.

8/03/2007 UMBC CMSC 341 Java 3

‘ The super Reterence

= All overridden methods in a subclass also
contain a reference to their corresponding
methods in the superclass named super.

= The following code contains the use of the
super reference to call the super class
constructor and to use the implementation of
the toString method of the superclass.

= Notice it also contains several uses of the this
reference.

8/03/2007 UMBC CMSC 341 Java 3 8

‘ Super Class Example

public class Person
{
protected String name;
private 1nt age;
public Person (String name, 1nt age) {
this.name = name;
this.age = age;
}

public Person (String name) {

this(name, 0); (@l Call to other constructor
}

public String toString(){ return name;}
public int getAge () { return age;}

public void setAge(int age){ this.age = age;}
public void setName (String name)

{ this.name = name; }

8/03/2007 UMBC CMSC 341 Java 3

‘ Subclass Example

public class Employee extends Person

{

private double salary;

public Employee (String ngme, int age, double sal) {
super (name, age) ; Call to superclass constructor
salary = sal;

}

public Employee (String name, double salary) {
this (name, 18, salary): - Call to constructor above

}

public double getSalary(){ return salary; }

public void setSalary(double sal){ salary = sal; }

public String toString() Call to superclass toString method

{ ’
return super.toString/()

+ Y has a salary of “ + salary;

8/03/2007

UMBC CMSC 341 Java 3 10

‘ Polymorphism in Action

public class Test

{

public static void main(String []args)

{
Person [] people = new Person[3];
people[0] = new Person("Sam");
people[l] = new Employee ("Jane",45345.63);

for (Person someone:people)

System.out.println (someone) ;
Output

} println invokes the toString method of
} the object the reference is pointing to,
as if it were a pointer in C++ and the
toString method were virtual.

Sam

null

Jane has a salary of 45345.63

8/03/2007 UMBC CMSC 341 Java 3

‘ Abstract Classes and Methods

= Java also has abstract classes and methods like
C++. If a class has an abstract method, then it must
be declared abstract.

public abstract class Node{ Abstract methods have no

String name; , implementation.
public abstract void typel()

public String toString () { return name;}
public Node (String name) {

this.name = name;

8/03/2007 UMBC CMSC 341 Java 3 12

‘ Subclass of Abstract Class

= Subclass of an abstract class must provide implementation for ALL
the abstract methods or it must be declared abstract as well.

public class NumberNode extends Node

int number;

public void print () {
System.out.println (“Number node”);

}
public NumberNode (String name, 1nt num) {
super (name) ;
number = num;
}
public String toString () {
+ N Y + number;

return super.toString/()

8/03/2007 UMBC CMSC 341 Java 3

‘ More about Abstract Classes

= Like C++, abstract classes can not be
Instantiated.

// OK because n 1s only a reference.
Node nj;

// OK because NumberNode is concrete.
Node n = new NumberNode (“Penta”, 5);

// Not OK. Gives compile error.

Node n = new Node (“Name”) ;

8/03/2007 UMBC CMSC 341 Java 3 14

‘ Multiple Inheritance in Java

= There are always cases where a class
appears to have characteristics of more than
one class. Consider the following hierarchy.

<= TA has characteristics of
both a Student and an
Employee

8/03/2007 UMBC CMSC 341 Java 3 15

‘ Interfaces

= Java only allows a class to extend one super
class. It does not allow multiple inheritance
like C++. However, to cope with the need for
multiple inheritance, it created interfaces.

= An interface is like class without the
implementation. It contains only
o public, static and final fields, and
o public and abstract method headers (no body).

8/03/2007 UMBC CMSC 341 Java 3

16

‘ Interface Example

= A public interface, like a public class, must be
in a file of the same name.

= The methods and fields are implicitly public
and abstract by virtue of being declared in an
interface.
public 1nterface Employable

{

vold raiseSalary(double d);
double getSalary():;

}

8/03/2007 UMBC CMSC 341 Java 3 17

‘ Intertaces (cont.)

= Many classes may implement the same
interface. The classes may be in completely
different inheritance hierarchies.

= A class may implement several interfaces.

public class TA extends Student implements
Employable

{
/* Now TA class must implement the getSalary

and the raiseSalary methods here */

8/03/2007 UMBC CMSC 341 Java 3 18

Inheritance Progression

Inheritance of Inheritance of
Implementation Interface

Note: In UML (Unified Modeling Language)
*Solid line means extends a superclass.
*Dotted line means implements an interface.

8/03/2007 UMBC CMSC 341 Java 3 19

‘ The Collections Framework

= The Java Collections Framework implements
a lot of the functionality of the C++ Standard
Template Library.

= It is a collection of interfaces, abstract and
concrete classes that provide generic
implementation for many of the data
structures you will be learning about in this
course.

8/03/2007 UMBC CMSC 341 Java 3 20

‘ The Collections Framework (cont.)

= All of the collection classes contain elements
of type Object. Since every object in Java
“is-a” Object, then we can create a collection
of heterogeneous objects.

= Before we begin examining Collections, let us
look at some of the interfaces the framework
uses.

8/03/2007 UMBC CMSC 341 Java 3 21

‘ The Arrays class

= The java.util.Arrays class is a utility class that
contains several static methods to process
arrays of primitive and reference data.

o binarySearch — searches sorted array for a
specific value

0 equals — compares two arrays to see if they
contain the same elements in the same order

a fill — fills an array with a specific value

0 sort — sorts an array or specific range in array in
ascending order according to the natural ordering
of elements

8/03/2007 UMBC CMSC 341 Java 3 22

‘ Natural Order

= The natural order of primitive data types is
known. However, if you create an array of
type Object, how does the sort method know
how to sort the array?

= One way is to pass a Comparator along with
the array.

= A Comparator is an object that implements
the java.util. Comparator interface.

8/03/2007 UMBC CMSC 341 Java 3 23

‘ The Comparator Intertace

= The compare method must behave like C's
stremp function. Returns

0 a negative number if 01 precedes 02,
o a zero if they are equal, and
0 a positive number if 02 precedes o1.

public i1nterface java.util.Comparator

{
int compare (Object ol, Object o02);

8/03/2007 UMBC CMSC 341 Java 3

24

‘ The Comparable Intertace

= The other way to define the natural ordering
of objects is by having the class implement
the Comparable interface. The compareTo
method also behaves like the strcmp method
in C.

public interface java.lang.Comparable
{
int compareTo (Object 0);

}

8/03/2007 UMBC CMSC 341 Java 3 25

‘ Comparable Example

import java.util.¥*;
public class Fraction implements Comparable
{
private int n;
private int d;
public Fraction(int n, int d){ this.n = n; this.d = d;}
public int compareTo (Object o)

{ Casting required
Fraction f = (Fraction) o; to access the
double dl = (double) n/d; object data
double d2 = (double)f.n/f.d;
it (dl == td2) . Casting required

return O; - :
else 1f (dl < d2)](cjloi\"/iz(ijoar;[mg pomt

return -1;
return 1;

}
public String toString() { return n + “/” + d; }

8/03/2007 UMBC CMSC 341 Java 3

26

Sort FExample

public class FractionTest

{

public static void main(String []args)

{

Fraction [] array = {new Fraction(Z, 3),

new Fraction (4,5),
Arrays.sort (array) ;
for (Fraction f :array)

new Fraction(l,6):;

System.out.println (f);

8/03/2007 UMBC CMSC 341 Java 3

27

‘ Collections

= The Collections framework provides two
Inheritance hierarchies for its containers.

o Collection
= Operations for lists and arrays

o Map
= Operations for hashes and associative arrays

= We will not be covering the Map interface in this course,
but for more information on this topic, see Sun’s

Collections tutorial at
http://java.sun.com/docs/books/tutorial/collections/index.html

8/03/2007 UMBC CMSC 341 Java 3 28

‘ The Collection Interface

= Some of the most common methods of this
interface are:

d

o O 0O O

add — adds a new element

remove — removes an element

Size — returns the number of elements
ISEmpty — returns whether collection is empty

contains — checks whether collection contains an
element

iterator — returns an lterator object to traverse the
Collection

8/03/2007

UMBC CMSC 341 Java 3 29

‘ Iist and Set Interfaces

= The Collection interface has two sub-
interfaces.

a The Set interface allows no duplicates to be
added to the Collection.

a The List interface allows for an ordered collection.
Elements are traversed in the order which they
are added to the list. Additional methods include:
= get—returns the element at a specified index
= indexOf —returns the index of a specified element

= listlterator — returns a Listlterator object that traverses
the list in both directions

8/03/2007 UMBC CMSC 341 Java 3 30

‘ Intertace Hierarchy

= Prior to the Collections framework, Java used
a Vector class and a Hashtable class. These
classes have been incorporated into the new

framework.

, AbstractCollection
/ _GbstractCollecton
AbstractSet

s

8/03/2007 UMBC CMSC 341 Java 3 31

AbstractList

‘ Collection Example

import java.util.*;
public class CollectionExample

{

public static void main(String args|[])

{

Collection a = new LinkedList () ;

2-add(new Integer(5)); Wy = Substitute with HashSet

a.add (new Integer (10));
a.add (new Integer (3)); and TreeSet to see
(5))

a.add (new Integer (5)); varying behavior
printAll (a);

}

public static void printAll (Collection c)

{

Iterator 1 = c.iterator();
while (1.hasNext ())
System.out.println(i.next());

8/03/2007 UMBC CMSC 341 Java 3 32

‘ Thread-safety

= One of the major improvements from the old
Vector and Hashtable classes to the
Collections framework was the separation of
thread-safety from the implementation. The
newer Collection classes are not thread-safe,
but they can be converted to be thread-safe

by using the Collections.synchronizedList,Set
or Map methods.

List list = Collections.synchronizedList (new
ArrayList());

8/03/2007 UMBC CMSC 341 Java 3 33

‘ (Generics

= Since JDK 1.5 (Java 95), the Collections
framework has been parameterized.

= A class that is defined with a parameter for a
type is called a generic or a parameterized

class. In C++, there were referred to as
template classes.

= If you compare the Collection interface in the
API for 1.4.2 to the one in version 1.5.0, you
will see the interface is now called
Collection<E>.

8/03/2007 UMBC CMSC 341 Java 3 34

‘ Collection <E> Interface

= The E represents a type and allows the user
to create a homogenous collection of objects.

= Using the parameterized collection or type,
allows the user to retrieve objects from the
collection without having to cast them.

Before: After:
List ¢ = new ArrayList(); List<Integer> ¢ = new ArrayList<Integer>();
c.add(new Integer(34)); c.add(new Integer(34));

Integer i = (Integer) c.get(0); Integeri = c.get(0);

8/03/2007 UMBC CMSC 341 Java 3 35

‘ Generic Cell Example

public class CellDemo

{

public static void main (String[] args)

{

// define a cell for Integers
Cell<Integer> intCell = new Cell<Integer>(new Integer (5)

// define a cell for Floats

Cell<Float> floatCell = new Cell<Float>(new Float(6.7));

// compiler error if we remove a Float from Integer Cell
Float t = (Float)intCell.getPrisoner();
System.out.println(t);

}
class Cell< T >

{
private T prisoner;
public Cell(T p)
{ prisoner = p; }
public T getPrisoner () {return prisoner; }

) ;

8/03/2007 UMBC CMSC 341 Java 3

36

‘ Dont’s of Generic Programming

= Like C++, you CANNOT use a parameter in a
constructor.
= T();

T array = new 5] ;

= Like C++, you CANNOQOT create an array of a
generic type.

Collection <Integer>

new Collection eger>[10];

8/03/2007 UMBC CMSC 341 Java 3 37

‘ Do’s ot Generic Programming

= The type parameter must always represent a reference data
type.

= Class name in a parameterized class definition has a type
parameter attached.

class Cell<T>
= The type parameter is not used in the header of the constructor.

public Cell()

= Angular brackets are not used if the type parameter is the type
for a parameter of the constructor.

public Cell3 (T prisoner);

= However, when a generic class is instantiated, the angular
brackets are used

List<Integer> c = new ArrayList<Integer>() ;

8/03/2007 UMBC CMSC 341 Java 3 38

‘ Bounding the Type

= You will see in the API a type parameter
defined as follows <? extends E>. This
restricts the parameter to representing only
data types that implement E, i.e. subclasses
of E

boolean addAll (Collection<? extends E> c)

8/03/2007 UMBC CMSC 341 Java 3 39

‘ Bounding Type Parameters

= The following restricts the possible

types that can be plugged in for a type
parameter T.

public class RClass<T extends Comparable>

» "extends Comparable" serves as a bound on the
type parameter T.

= Any attempt to plug in a type for T which does not
implement the Comparable interface results in a
compiler error message

8/03/2007 UMBC CMSC 341 Java 3 40

More Bounding

= |n the API, several collection classes contain
<? super T> in the constructor. This bounds

the parameter type to any class that is a
supertype of T.

interface Comparator<T>
{ int compare (T fst, T snd); }

TreeSet (Comparator<? super E> c)

8/03/2007 UMBC CMSC 341 Java 3 41

 Generic Sorting

public class Sort

{
public static <T extends Comparable<T>>

vold bubbleSort (T[] a)

{
for (int 1 = 0; i< a.length - 1; 1i++)

for (int 3 = 0; j < a.length -1 - 1;
1f (a[j+1].compareTo(al[]]) < 0)
{
T tmp = alj];
alj] = alj+1];
alj+l] = tmp;

j4+)

8/03/2007 UMBC CMSC 341 Java 3

42

‘ Generic Sorting (cont.)

= Given the following:

class Animal implements Comparable<Animal> { ...}
class Dog extends Animal { ... }
class Cat extends Animal { ... }

= Now we should be able to sort dogs if contains the compareTo
method which compares animals by weight.

= BUT... bubblesort only sorts objects of type T which extend T.
Here the super class implements Comparabile.

= New and improved sort on next page can handle sorting Dogs
and Cats.

8/03/2007 UMBC CMSC 341 Java 3 43

‘ Generic Sorting (cont.)

public class Sort

{
public static <T extends Comparable<? super T>>

vold bubbleSort (T[] a)

{
for (int 1 = 0; i< a.length - 1; 1i++)
for (int 3 = 0; j < a.length -1 - 1; J++)
1f (a[j+1].compareTo(al]]) < 0)
{
T tmp = aljl;
aljl = alj+11;
alj+l] = tmp;

8/03/2007 UMBC CMSC 341 Java 3 44

