
CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Spring 2002

Project: Base64 Content-Transfer-Encoding

Due: Tuesday March 12, 2002

Objective

The objectives of this programming assignment are 1) to gain more familiarity with data
manipulation at the bit level, 2) to develop further experience using Linux system calls.

Background

Exchanging binary files by email is not quite straightforward because many mail servers were
designed to handle text, not binary data. Attempts to send binary files through these servers can
result in mangled files. For example, some mail servers might ignore the most significant bit of each
byte, since standard ASCII encoding uses only 7 bits. Other mail servers truncate all data beyond the
80th character of each line. In fact, the whole concept of a line is meaningless when we work with
binary files. To complicate matters, email is often routed through several servers, so the problem
might not be with either the sender’s mail server or the receiver’s mail server.

The MIME (Multipurpose Internet Mail Exchange) standard defined in Internet RFC 1521 is a
comprehensive mechanism for formatting Internet messages.† For many people, MIME is synony-
mous to email attachments. We are interested in just one section of this standard the Base64
Content-Transfer-Encoding that specifies how binary files should be converted into a text file that
can be sent intact through most mail servers. The complete specifications of the Base64 standard are
(what else) attached at the end of this project description.

Assignment

Your assignment is to write an assembly language program that prompts the user for the file
names of an input file and an output file. The program must transform the data in the input file into
a text file in a manner that complies with the Base64 Content-Transfer-Encoding. The output of the
program must be stored in the output file.

As a reference standard, we will use the mimencode command on linux.gl.umbc.edu. Using
mimencode with the -u option, we can convert the output of your program back to binary. If your
program works correctly, the output of mimencode -u should be identical to the original input file.

For 15% extra credit, write an assembly language program that reverses the process of your first
program. I.e., the second program prompts the user for an input file and an output file. If the input
file is a properly formatted text file that conforms to the Base64 standard, your program should
store the corresponding binary file in the output file.

Implementation Issues:

1. All of the file conversion must be done by your program. You are, of course, not allowed to
make a system call to mimencode.

2. Files can be opened for reading using a system call to the open() function. The C function
prototype of open() is:

int open(const char *pathname, int flags);

† Unlike other organizations (e.g., ANSI, ISO) which publish standards with lofty-sounding titles, the Internet
Engineering Task Force’s (IETF’s) standards are for historical reasons published as Request for Comments (RFCs).
Although not all RFCs are standards, the specifications of just about every Internet protocol can be found in an
RFC. For more information on RFCs and how they are published, check out <http://www.rfc-editor.org>.

According to the Linux system call convention, the syscall number for open() should be
stored in EAX, a pointer to a null-terminated string with the name of the file to be opened
should be stored in EBX and the flag O_RDONLY should be stored in ECX. The return value,
stored in EAX, is a file descriptor (a 4-byte integer) that can be used in subsequent syscalls to
read(). Further information on open() can be obtained from the Linux man pages. Type
’man 2 open’.

3. Symbolic constants for syscall numbers, flags, etc can be found in a file called stddefs.mac
in the directory: afs/umbc.edu/users/c/h/chang/pub/cs313. Copy this file into your
own directory. Then, the file can be included in your assembly language program using the
NASM directive:

%include “stddefs.mac”

4. To open a file for writing, a syscall to creat() is more appropriate. The C function
prototype for creat() is:

 int creat(const char *pathname, mode_t mode);

Calling creat() is very similar to calling open(). The difference is that the file is opened
for writing and the file is created if it does not already exist. If a file with the same name
already exists, it is overwritten. As before, the return value stored in EAX is a file descriptor.
The second argument to creat() is used to set the permissions of the newly created file (as
in the chmod Unix command). You will most likely want to allow the user to read and write
to the file, so store the expression S_IREAD|S_IWRITE in the ECX register. S_IREAD and
S_IWRITE are defined in stddefs.mac.

5. Remember to close all open files before your program terminates. This is accomplished with
a syscall to close() with the file descriptor as the sole argument. The close() function has
the following function prototype:

int close(int fd);

6. Once a file is opened, you can read from and write to it using the read() and write()
syscalls as you have done with stdin and stdout.

7. Despite what the man pages say, you can tell that you have reached the end of a file you are
reading when read() returns 0.

8. Recall that read() stores the characters read at the address provided and returns the number
of characters read. The string read in is not null-terminated. Also, if the string is read from
stdin, the last character is a ‘\n’. Thus, some massaging of the string is needed before it
can be used as a file name.

9. You should not assume that the file has run out of bytes when read() does not return the
maximum number of bytes requested.

10. It is inefficient to read 3 bytes at a time.

11. The functions open(), creat() and read() return the value -1 if an error is encountered.
The cause of the error is given as an error code in the global variable errno. If you wish to
examine these values, you must declare errno to be an external label. Symbolic names for
some of the possible values for errno can be found in stddefs.mac. Consult the Linux man
pages for the meaning of each error. If you reference errno, then you must link your
program using ‘gcc -nostartfiles’ instead of ld.

12. Recall that the Intel Pentium CPU is little endian. If you move multiple bytes into a register,
the bytes might not be ordered the way you like.

13. Assembly language instructions that you might find useful include: AND, OR, SHL, SHR,
XCHG.

14. A common task that you will want to perform is: add a new character to the output buffer,
then write out the buffer if it is full. You will probably want to write a subroutine to do this.
Invent your own parameter passing conventions.

15. Read the Base64 specifications for handling the last few bytes of input carefully. The output
may need to be padded with 1 or 2 ‘=’ as appropriate.

16. If you want to have your output appear identical to the output from mimencode, print out 72
characters per line.

Turning in your program

Use the UNIX ‘submit’ command on the GL system to turn in your project. The class name
for submit is ‘cs313’ and the project name is ‘project’. Sample runs and a typescript file is not
needed for this project. The grader will simply test your program using mimencode and some binary
files. Include a README file if your submission needs any special attention.

References

1. Borenstein, N. and Freed, N. “MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies.”
RFC 1521, September 1993. Available at <ftp://ftp.isi.edu/in-notes/>.

RFC 1521 MIME September 1993

5.2 Base64 Content-Transfer-Encoding

The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of
octets in a form that need not be humanly readable. The encoding and decoding
algorithms are simple, but the encoded data are consistently only about 33 percent larger
than the unencoded data. This encoding is virtually identical to the one used in Privacy
Enhanced Mail (PEM) applications, as defined in RFC 1421. The base64 encoding is
adapted from RFC 1421, with one change: base64 eliminates the "*" mechanism for
embedded clear text.

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per
printable character. (The extra 65th character, "=", is used to signify a special processing
function.)

NOTE: This subset has the important property that it is represented
identically in all versions of ISO 646, including US ASCII, and all
characters in the subset are also represented identically in all versions of
EBCDIC. Other popular encodings, such as the encoding used by the
uuencode utility and the base85 encoding specified as part of Level 2
PostScript, do not share these properties, and thus do not fulfill the
portability requirements a binary transport encoding for mail must meet.

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded
characters. Proceeding from left to right, a 24-bit input group is formed by concatenating
3 8-bit input groups. These 24 bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single digit in the base64 alphabet. When encoding a bit
stream via the base64 encoding, the bit stream must be presumed to be ordered with the
most-significant-bit first. That is, the first bit in the stream will be the high-order bit in
the first byte, and the eighth bit will be the low-order bit in the first byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The
character referenced by the index is placed in the output string. These characters,
identified in Table 1, below, are selected so as to be universally representable, and the set
excludes characters with particular significance to SMTP (e.g., ".", CR, LF) and to the
encapsulation boundaries defined in this document (e.g., "-").

Borenstein & Freed [Page 17]

RFC 1521 MIME September 1993

Table 1: The Base64 Alphabet

Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

The output stream (encoded bytes) must be represented in lines of no more than 76
characters each. All line breaks or other characters not found in Table 1 must be ignored
by decoding software. In base64 data, characters other than those in Table 1, line breaks,
and other white space probably indicate a transmission error, about which a warning
message or even a message rejection might be appropriate under some circumstances.

Special processing is performed if fewer than 24 bits are available at the end of the data
being encoded. A full encoding quantum is always completed at the end of a body.
When fewer than 24 input bits are available in an input group, zero bits are added (on the
right) to form an integral number of 6-bit groups. Padding at the end of the data is
performed using the ’=’ character. Since all base64 input is an integral number of
octets, only the following cases can arise: (1) the final quantum of encoding input is an
integral multiple of 24 bits; here, the final unit of encoded output will be an integral
multiple of 4 characters with no "=" padding, (2) the final quantum of encoding input is
exactly 8 bits; here, the final unit of encoded output will be two characters followed by
two "=" padding characters, or (3) the final quantum of encoding input is exactly 16 bits;
here, the final unit of encoded output will be three characters followed by one "="
padding character.

Because it is used only for padding at the end of the data, the occurrence of any ´=’
characters may be taken as evidence that the end of the data has been reached (without
truncation in transit). No such assurance is possible, however, when the number of octets
transmitted was a multiple of three.

Any characters outside of the base64 alphabet are to be ignored in base64-encoded data.
The same applies to any illegal sequence of characters in the base64 encoding, such as
"====="

Borenstein & Freed [Page 18]

RFC 1521 MIME September 1993

Care must be taken to use the proper octets for line breaks if base64 encoding is applied
directly to text material that has not been converted to canonical form. In particular, text
line breaks must be converted into CRLF sequences prior to base64 encoding. The
important thing to note is that this may be done directly by the encoder rather than in a
prior canonicalization step in some implementations.

NOTE: There is no need to worry about quoting apparent encapsulation
boundaries within base64-encoded parts of multipart entities because no
hyphen characters are used in the base64 encoding.

Borenstein & Freed [Page 19]

