CMSC 313 Fall 2010

Exam 3

December 16, 2010

Name__________________________________Score _________________

UMBC Username __

Notes:

a. Please write clearly. Unreadable answers receive no credit.

b. There are no intentional syntax errors in any code provided with this exam. If you think you see an error that would affect your answer, please bring it to my attention

c. This exam is worth 90 points

Have a happy holiday and safe winter break

[image: image1.png]

Multiple Choice (2 points each)

Write the letter of the BEST answer for each question in the corresponding box at the bottom of the page.

1. In the memory hierarchy, level k is considered a cache for level k + 1 because

A. it's smaller and faster

B. it's bigger and slower

C. it's always in memory

D. it's always on the CPU chip

2. PROM stands for

A. Partial Read Only Memory

B. Programmable Read Only Memory

C. Partitioned Read Once Memory

D. Permanent Read Once Memory

3. Which of the following signals cannot be blocked ?

A. 2 - SIGINT

B. 9 - SIGKILL

C. 17 - SIGCHLD

D. 32 - SIGSUICIDE

4. In disk terminology, "seek time" refers to

A. The time it takes for the read/write heads to move to the correct cylinder

B. The time it takes for the read/write heads to move to the correct surface

C. The time it takes to copy data from the disk into memory

D. The time it takes for the read/write heads to move to the correct sector

5. Suppose process "A" uses fork() to create child process "B" and that "A" calls
exit() before "B" is finished running. Which of the following is true?

A. A exits and B is now known as a "zombie"

B. B is killed by the operating system as soon as A exits

C. A exits and B is "adopted" by a process that is part of the operating system

D. A is forced to wait until B exits

6. A signal handler is

A. a function in the kernel that sends signals

B. a function in the kernel that executes when a process receives a signal

C. a user function that sends signals

D. a user function that executes when a process receives a signal

7. In project 6, we provided code for a basic list allocator that used an implicit list of free blocks. Many students improved this code by creating an explicit linked list of free blocks. Why did this change increase the performance of the allocator?

A. Traversing a linked list is significantly faster than moving from block to block in the
 implicit list.

B. The implicit list had to include every block in memory, but the linked list could just
 include the free blocks.

C. Having a linked list made coalescing significantly faster.

D. None of the above.

8. A bus...

A. carries data from the CPU to main memory

B. carries memory addresses from the CPU to main memory

C. is a collection of parallel wires

D. all of the above

9. The memory inside of your PC / laptop will consist of more DRAM chips than SRAM chips because

A. SRAM chips are physically larger than DRAM chips, so fewer SRAM chips can fit inside your PC

B. SRAM chips are slower than DRAM chips

C. SRAM chips are faster than DRAM chips, but are also more expensive

D. This statement is false; there will be more SRAM than DRAM

10. The system call execl() is used to

A. create a child process

B. load and execute a program

C. execute special code in the kernel

D. switch the CPU to "exec mode"

11. RAM is considered to be "volatile memory" because

A. its state is occasionally changed without warning

B. its state is lost when power is removed

C. its state fluctuates, but is always recoverable

D. none of the above

12. Direct memory access (DMA) is used

A. When the CPU stores the value of a variable into memory

B. When the CPU reads the value of a variable from memory

C. When data is read from the disk

D. Both A and B

13. Which of the following is not a situation that results in a signal being sent to a process?

A. A process terminates

B. A process accesses an invalid memory address

C. A divide by zero

D. None of the above (i.e., all result in a signal being sent)

14. What is the most likely immediate result of executing the following code:

int foo[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9 10};

int *p = (int *) malloc(4 * sizeof(int));

p = p - 1;

*p = foo[0];

A. The first element of foo is initialized to the value 4

B. A segmentation fault occurs

C. p is reset to point to the array named foo

D. Header block information in the heap is corrupted

15. Over a long series of malloc() and free() requests, which of the following is most likely to give the best heap utilization

A. First fit

B. Next fit

C. Best fit

D. Worst fit

Short Answer

16. (6 points) In no more than 2 sentences, define internal fragmentation and give two reasons it occurs.

__

__

__

__

__

__

internal fragmentation is space within an allocated block that is not part of the payload.

It occurs due to alignment requirements and bookkeeping info such as headers and footers

17. (6 points) Suppose a disk drive has the following characteristics

· Rotational speed is 10,000 revolutions per minute (RPM)

· The average seek time is 5ms

· On average, there are 1000 sectors per track

a. What is the average rotational latency time in milliseconds (ms) ___________

b. What is the average transfer time in milliseconds _______________________

c. What is the average time to access a sector in milliseconds _______________

 SHAPE

18. (10 points) - Dynamic Memory Coding

This problem tests your understanding of pointer arithmetic, pointer dereferencing, and malloc implementation. Robert R. Roberts (BobbyBob to his friends) has implemented a simple explicit-list allocator. You may assume that his implementation follows the usual restrictions that you had to comply with in Project 6 such as the 8-byte alignment rule. Note that RRR is working on a 32-bit machine.

The following is a description of RRR's block structure:

• HDR - Header of the block (4 bytes)

• PAYLOAD - Payload of the block (arbitrary size)

• FTR - Footer of the block (4 bytes)

The size of each block is stored in the header and the footer of the block. Since there is an 8-byte alignment requirement, the least significant of the 3 unused bits is used to indicate whether the block is free (0) or allocated (1). Your task is to help RRR compute the correct payload size (using the function getPayloadSize())by completing the code for the getSize() and getHeader() functions. Note that there may be more than one correct implementation for either or both of these functions. One or two lines of code should suffice for each function. Be sure to use appropriate casting and parenthesis as necessary.

/* Given a pointer to an allocated block's payload,

** returns the block header */

int getHeader(void *bp)

{

}

/* Given a pointer to an allocated block's payload

** extracts the size of the block from the block header

** returned by calling getHeader() */

*/

int getSize(void *bp)

{

}

/* Given a pointer to an allocated block's payload

** returns the actual size of payload. */

int getPayloadSize(void *bp)

{

return (int)(getSize(bp));

}

19. (8 points) Consider the simple functions below, then answer the questions which follow in the boxes provide, using no more than two sentences for each answer

int fun1(int a[N])

{

int k, x = 0;

for (k = N; k >= 0; --k)

x += a[k];

return x;

}

int fun2(int b[N][M])

{

int j, k, x = 0;

for(j = 0; j < M; j++)

for (k = 0; k < N; k++)

x += b[k][j];

return x;

a. Does fun1() exhibit good spatial locality? If so, why? If not, why not? SHAPE

b. Does fun1() exhibit good temporal locality with respect to the parameter a[]? If so, why? If not, why not?

c. Does fun2() exhibit good spatial locality? If so, why? If not, why not?

d. Does fun2()exhibit good temporal locality with respect to the variable x?
If so, why? If not, why not?

Heap Memory Allocation

20. (6 points) Dynamic storage allocation

The following problem concerns dynamic storage allocation. Consider an allocator that uses an implicit free list. The layout of each allocated and free memory block is as follows:

 31___________________2 1 0

| Block Size (bytes) | | Header

|____________________|_____|

| |

| |

|__________________________|

| Block Size (bytes) | | Footer

|____________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29 higher order bits in the header and footer are needed to record block size, which includes the header and footer. The usage of the remaining 3 lower order bits is as follows:

 bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

􀀀 bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

􀀀 bit 2 is unused and is always set to be 0.

Given the contents of the heap shown in the middle column, show the new contents of the heap in the right column after a call to free(0x600b010) is executed. Your answers should be given as hex values. Note that the addresses grow from bottom up. Assume that the allocator uses immediate coalescing (e.g. adjacent free blocks are merged immediately each time a block is freed). Be sure to change only those values in memory that MUST be changed.

	Address
	Current Value
	New Value

	0x600b028
	0x00000012
	

	0x600b024
	0x600b611c
	0x600b611c

	0x600b020
	0x600b512c
	0x600b512c

	0x600b01c
	0x00000012
	

	0x600b018
	0x00000013
	

	0x600b014
	0x600b511c
	0x600b511c

	0x600b010
	0x600b601c
	0x600b601c

	0x600b00c
	0x00000013
	

	0x600b008
	0x00000013
	

	0x600b004
	0x600b601c
	0x600b601c

	0x600b000
	0x00000013
	0x00000013

	0x600affc
	0x00000013
	

Process Control

21. (10 points) Consider the following C program. For space reasons, we do not check return codes, so assume that all functions return normally.

int main()

{

if (fork() == 0) {

if (fork() == 0) {

printf("3");

} else {

pid_t pid; int status;

pid = wait(&status);

printf("4");

}

} else {

if (fork() == 0) {

printf("1");

exit(0);

}

printf("2");

}

printf("0");

return 0;

}

For each of the 5 outputs listed below, write YES in the box if the output is a valid output for this program, and write NO in the box if the output is impossible. Assume that all processes run to normal completion.

	OUTPUT
	2030401
	1234000
	2300140
	2034012
	3200310

	YES / NO
	
	
	
	
	

Creating Processes

22. (9 points) For each section A – C, indicate the number of times that “Hello” is printed in the box at the bottom of the page. Don't overlook the printf() function call in main.

Section A:

Section B:
void doitA() {

void doitB() {
 fork();

if (fork() == 0) {
 fork();

 fork();
 printf(“Hello\n”);

 printf(“Hello\n”);
}

 exit(0);

}

}

int main() {

int main() {
 doitA();

doitB();
 printf(“Hello\n”);

printf(“Hello\n”);
 return 0;

return 0;
}

}

Section C:

void doitC() {

if (fork() == 0) {

fork();

printf(“Hello\n”);

}

}

int main() {

doitC();

printf(“Hello\n”);

return 0;

}

23. (5 points) Consider the following C program. (For space reasons, we are not checking error return codes. You can assume that all functions return normally.)

int val = 10;

void handler(sig)

{

val += 5;

return;

}

int main()

{

int pid, childStatus;

signal(SIGCHLD, handler);

if ((pid = fork()) == 0) {

val -= 3;

exit(0);

}

wait(&childStatus);

printf("val = %d\n", val);

exit(0);

}

What is the output of this program?

1

		

2

3

4

5

6

	

7

8

	

9

10

HDR

PAYLOAD

FTR

\

11		

12

13	

14

15

A

B

C

