

CMSC 313 Fall 2010
Midterm Exam 1
Section 02
October 11, 2010
Name____________________________________
Score _________ / 85
UMBC Username __
Notes:

1. Please write clearly. Unreadable answers receive no credit.

2. For short answer questions your answer should be short, clear and to the point, not long and rambling.

3. For True / False question, write the word TRUE or FALSE; do not use the letters T and F. Using T and F will result in a 2-point deduction.

4. There are no intentional syntax errors in any code provided with this exam. If you think you see an error that would affect your answer, please bring it to my attention.
5. You may assume that any necessary .h files have been #included where necessary.

6. For all questions, assume the following data sizes in bytes

a. sizeof(char) = 1

b. sizeof(short) = 2

c. sizeof(int) = sizeof(long) = 4

d. sizeof(float) = 4

e. sizeof(double) = 8
True / False (2 points each)
1. _______________ In C, any non-zero value is considered "true" when evaluated as a Boolean value.

2. _______________ Given the declarations
int a[10], *p1 = &a[3], *p2 = &a[5];
then the output of printf("%d\n", p2 - p1); is the value 2.

3. _______________ Defining macros such as
#define ADD1(x) (x = x + 1) is a safe, convenient substitute for writing functions.

4. _______________ In C, functions are uniquely identified by their name, so no two .c files may have functions with the same name.

5. ____________The declaration char string[4] = {'A', 'B', 'C'}; creates a C string of length 3..

6. _____________ Header files are "guarded" to make their contents "private".

7. _______________ Other than the function prototypes, there is no difference between malloc() and calloc().

8. _____________ The function prototypes void f(int a[]) and
void f(int *a) are identical in the eyes of the compiler.

9. ____________ Any void * can be free converted to and from a pointer of any other data type.

10. ___________ A function prototype tells the compiler the type of the value that is returned by the function.

Multiple Choice (2 points each)
 (Write the letter of the best answer in the space provided)
11. ______ In C the length of a string is determined....

[a.] from the declared size of the array which contains it.
[b.] by a length byte stored at the beginning of the string.
[c.] by a null terminator stored at the end of the string.
[d.] by a length byte stored at the end of the string

12. _______ Let p be a pointer to an integer and let n be an int variable. Then after the assignment p = &n; the value of *p is

[a.] the address of p
[b.] the value store in p
[c.] the address of n
[d.] the value stored in n

13. _______ The expression sizeof(struct foo) refers to

[a.] the number of member variables in struct foo
[b.] the size of the largest member variable in struct foo
[c.] the total size of struct foo in bytes
[d.] the number of pointer members in struct foo

14. _______ What is the advantage of using a pointer to a structure as a parameter to a function, instead of the structure itself ?

[a.] The code is easier to read.
[b.] It's more efficient because the structure is not copied.
[c.] There is no difference; it is a matter of style which is used.
[d.] Passing a structure as a parameter is not allowed.

15. _______Which of the following can NOT be done with a structure variable ?

[a.] assign from one struct to another using "="
[b.] pass as an argument to a function
[c.] return as the value of a function
[d.] all of the above can be done

16. _______ When an index is used that is too large for its array

[a.] The compiler displays a warning

[b.] The compiler displays an error

[c.] Your program usually terminates with a segfault

[d.] The C runtime environment throws an exception

17. ______ The primary difference between a union and a struct is

[a.] The syntax used to define them

[b.] The syntax used to access their data members

[c.] Structs can contain code, unions cannot

[d.] Struct data members have separate memory, union data members share memory

18. _______What is the output of the following code fragment?

int n[6] = (10, 20, 30, 40, 50, 60};

int *p;

p = &n[2];

*p += 2;

printf ("%d, %d", *p, *(p + 1));

[a.] 32, 40
[b.] 32, 33
[c.] 50, 51
[d.] 50, 60
19. _______ Given the declarations below, which of the following expressions are equivalent?
typedef struct point { int x, y; } POINT;

POINT endpoint, *p = &endpoint;

[a.] p->x and *p.x

[b.] p-> x and endpoint.x

[c.] p.x and endpoint.x

[d.] none of these are equivalent
20. _______ Give the declaration char [] name = "Abe123"; the output from printf("%-10s", name); is

[a.] Abe123 with 4 trailing spaces
 [b.] Abe123 with 4 leading spaces
 [c.] Abe124 with 10 trailing spaces

[d.] Abe123 with no leading or trailing spaces

21. _______ When an array is passed to a function as an argument

[a.] the elements of the actual array are copied for the function to use
[b.] the function parameter is a pointer that holds the address of the array
[c.] the programmer must write code which allocates enough space for the
function to store the array.
[d.] a compiler warning is displayed

22. ________ When a function exits, the values stored in the function's static local variables are

[a.] saved until the next time the function is called
[b.] reset to 0
[c.] lost forever
[d.] none of the above

23. ________ Given the declarations int x = 42, *ip = NULL;
the statement x = *ip;

[a.] assigns 0 to x
[b.] has no effect
[c.] causes a compiler error
[d.] causes a segmentation fault at runtime

24. _______ Given the declarations below which of the following is NOT TRUE

double d = 3.14, *dp = &pi, **dpp = &dp;

[a.] The value of *dp is 3.14
[b.] The value of *dpp is the address of dp
[c.] The value of **dpp is 3.14
[d.] all of the above are true

25. _______ Which of the following is NOT TRUE

[a.] malloc() and calloc() both allocated memory from the heap
[b.] free() is used to return memory to the heap
[c.] malloc() and calloc() both return NULL if allocation fails
[d.] memory obtained from malloc() and calloc() is uninitialized

SHORT ANSWER

26. (4 points) "gcc" is often incorrectly referred to as "the C compiler". In fact, gcc is the GNU C/C++ compiler/linker driver. Creating an executable program from a C source code file takes 4 steps (not including any possible code optimization). List the 4 gcc steps described in class which are necessary to create an executable program from a C source code file. List the steps in the order they occur.

a. ___

b. ___

c. ___

d. ___

27. (2 points) If not used carefully, C library functions such as strcpy() and strcat() that manipulate strings can lead to subtle errors or program termination (segmentation fault). In two sentences or less, explain why this is so.

__

__

28. (5 points) In no more than two (2) sentences, give a brief description of the task this function performs on the lines provided. DO NOT describe each line of code or the individual "steps".

double *mystery(double d[] , int n)

 {

int k;

double *dp = d;

for(k = 1; k < n; k++)

{

if(d[k] > *dp)

dp = d + k;

}

return dp;

}

29. (4 points) Examine the code in the boxes, then answer the questions below

a. What is the scope of randomInt?

b. What is purpose of declaring randomInt extern in main.c?
c. What is the scope of printRandoms()?

d. What is the lifetime of lastRandom?

30. (30 points) Fill in the blanks in the code below. Each blank line represents one line of code and is worth two (2) points. The length of the line is NOT indicative of the length of the answer. Carefully read the comments for each function.

// The following C structure and functions, which are defined in
// arraylist.c, are a simple implementation of a Java ArrayList for
// storing integers - like an array, but grows larger as needed
typedef struct ArrayList {

 int *array; // pointer to the array

 int capacity; // nr ints that MAY be stored

 int size; // nr ints that ARE stored

} ARRAYLIST;
#define INITIAL_CAPACITY 5 // allocate an array for 5 ints when created
// creates an array of INITIAL_CAPCITY ints initialized to zero
// initializes ARRAYLIST data members appropriately
void InitArrayList(ARRAYLIST *alp)

{

 assert(alp != NULL); // precondition

 alp->array = __;

 assert(alp->array != NULL);

 alp->capacity = _______________________________________;
 alp->size = __;

}

// determines if the specified index is valid for the ARRAYLIST
static bool IsValidIndex(ARRAYLIST *alp, int index)

{

 return ___

}

// adds an element to the end of the ARRAYLIST
// This function is an excellent example of code reuse
void Add(ARRAYLIST *alp, int x)

{

 assert(alp != NULL);

__;
}

// returns the number of items stored in the ARRAYLIST

int Size(ARRAYLIST *alp)

{

 assert(alp != NULL);

 return alp->size;
}
// Inserts x at the specified index

// Doubles the capacity of the array list if necessary

// Shifts the element currently at "index" (if any) and any subsequent //
elements to the right (adds one to their indices)
void Insert(ARRAYLIST *alp, int x, int index)

{

 assert (alp != NULL);

 assert(IsValidIndex(alp, index));

// double the capacity if necessary

if (__)

{

 alp->capacity = __;

 alp->array = ___;

 assert(alp->array != NULL);

 }

// shift the elements and store the new value
 int i;

 for (___)

{

___;

}

__;

 ++alp->size;

}

// Remove the element at the specified index

// Shifts any subsequent elements to the left
// (subtracts one from their indices)
// Returns the integer that was removed

int Remove(ARRAYLIST *alp, int index)

{

 assert (alp != NULL);

 assert(IsValidIndex(alp, index));

 int value = alp->array[index];

 int i;

 for (i = index; ___________________________; i++)

{

__;

}
 --alp->size;

 return value;

}

// returns the integer stored at the specified index
int Get(ARRAYLIST* alp, int index)

{

 assert(alp != NULL);

 assert(IsValidIndex(alp, index));

 return ___:
}

// changes the int at the specified index to x
void Set(ARRAYLIST *alp, int x, int index)

{

 assert(alp != NULL);

 assert(IsValidIndex(alp, index));

___;

}

31. Questions about the code above
a. (3 points) During the code review process, one of your peers was impressed with your design and code, but noted that your implementation was limited to storing integers. He noted that your ArrayList could not be used to store float, char, or any other data type and that modifying it to do so would require copying, pasting, and editing your code. This is a very time consuming job and prone to errors. Although no perfect solution exists, BRIEFLY describe the change(s) that you would make to this implementation so that modifying it to be used with a different data type is as easy a C allows it to be. The space below should be sufficient for your answer.

b. (2 points) In order to use your ARRAYLIST implementation (which is defined in arraylist.c) in many applications you should create arraylist.h which will be #included in other .c files so that they compile without errors or warning. Which of the following SHOULD NOT be included in arraylist.h? Write its/their letter(s) on the line below

a. The prototype for the Remove function

b. The prototype for the IsValidIndex function

c. The ARRAYLIST structure definition

d. The #define for INITIAL_CAPACITY

SHOULD NOT be part of arraylist.h ____________________________

/** random.c **/

int randomInt;

void getRandomInt(int max)

{

 static long lastRandom = 100001;

 lastRandom

	= (lastRandom * 125) % 2796203;

 randomInt = (lastRandom % max) + 1;

}

/** main.c **/

extern int randomInt;

void getRandomInt(int x);

static void printRandoms(int n)

{

 int k;

 for (k = 0; k < n; k++)

 {

	getRandomInt(12345);

	printf("%d\n",	randomINt);

 }

}

int main()

{

 printRandoms(5);

 return 0;

}

9

