
CMSC 313 Fall2009
Exam 3

December 18, 2009

Name__________________________________Score _________________

UMBC Username __

Notes:

a. Please write clearly. Unreadable answers receive no credit.

b. There are no intentional syntax errors in any code provided with this
exam. If you think you see an error that would affect your answer,
please bring it to my attention

Multiple Choice (2 points each)
Write the letter of the BEST answer on the line provided for each question.

1. _______ When you run two programs (processes) on the same Linux machine, why do
you not have to worry about them using the same physical memory?
 A. The programmers who wrote the programs knew to avoid using the same
addresses and were careful not to do so.
 B. The virtual addresses used by the processes are translated to non-overlapping
physical addresses.
 C. Only one program really runs at a time, and the physical memory is
saved/restored as part of each context switch.
 D. The linker carefully lays out address spaces to avoid overlap of physical
memory

2. _______ The most important job of a linker is
 A. code optimizing
 B. symbol resolution and relocation
 C. providing information for the debugger
 D. matching function prototypes with function definitions

3. _______ In the memory hierarchy, level k is considered a cache for level k+1 because
 A. it's smaller and faster
 B. it's bigger and slower
 C. it's always in memory
 D. it's always on the CPU chip

4. _______ A "page fault" occurs when
 A. your process makes a system call to the kernel
 B. your process access a virtual page that is not in physical memory
 C. your process calls a C library function
 D. your process accesses memory that belongs to a different process

5. _______ Which of the following techniques is the fastest for organizing the heap's free list?
 A. explicit free list
 B. implicit free list
 C. segregated free lists
 D. they're all about the same

6. _______ In a heap memory allocator, "internal fragmentation" refers to
 A. wasted space within an allocated block
 B. overhead (headers, footers, etc) within a free block
 C. free, but unusable blocks within the heap
 D. "holes" in the heap

7. _______ A zombie process is created when
 A. a child process terminates, but its parent process continues to run
 B. a parent process terminates, but its child process continues to run
 C. when a process is sent the SIGZOMBIE signal
 D. the user types "control-Z" while the process is running

8. _______ A signal handler is
 A. a function in the kernel that sends signals
 B. a function in the kernel that executes when a process receives a signal
 C. a user function that sends signals
 D. a user function that executes when a process receives a signal

9._______ Suppose a function declares a local variable named my_int of type int.
Which of the following (if any) is/are dangerous in C?
 A. Returning &my_int
 B. Assigning the value my_int to a global variable
 C. Printing the address of my_int to the screen
 D. None of the above

10._______The term "symbol reference" refers to
 A. using the name of variable or function
 B. defining and initializing a local variable
 C. passing a parameter to a function by reference
 D. defining and initializing a global variable

11. ______With respect to disk storage, the term "rotational latency" refers to
 A. The number of sectors that pass under the read/write head on each revolution
 B. The time required to wait for the desired sector to pass under the read/write head
 C. The time it takes for the disk to make one complete revolution
 D. The time required to wait for the desired track to pass under the read/write head

12. ______ The system call execl() is used to
 A. create a child process
 B. load and execute a program
 C. execute special code in the kernel
 D. switch to "kernel mode"

13. ______ RAM is considered to be "volatile memory" because
 A. its state is occasionally changed without warning
 B. its state is lost when power is removed
 C. its state fluctuates, but is always recoverable
 D. none of the above

14. Symbols and Linking (18 points)
Consider the following three files, main.c, fib.c, and bignat.c, then answer the questions
on the following page. Note that the functionality of the code is irrelevant to the
question, so do not spend lots of time determining what the code does.

/* main.c */

void fib (int n);

int main (int argc, char** argv)
{
 int n = 0;
 sscanf(argv[1], "%d", &n);
 fib(n);
}

/* fib.c */

#define N 16
static unsigned int ring[3][N];

static void print_bignat(unsigned int* a)
{
 int i;
 for (i = N-1; i >= 0; i--)
 /* print a[i] as unsigned int */
 printf("%u ", a[i]);

 printf("\n");
}

void fib (int n)
{
 int i, carry;
 from_int(N, 0, ring[0]); /* fib(0) = 0 */
 from_int(N, 1, ring[1]); /* fib(1) = 1 */
 for (i = 0; i <= n-2; i++) {
 carry =
 plus(N, ring[i%3], ring[(i+1)%3], ring[(i+2)%3]) ;
 if (carry) {
 printf("Overflow at fib(%d)\n", i+2);
 exit(0);
 }
 }
 print_bignat(ring[n%3]);
}
Furthermore assume that a file bignat.c defines functions plus and from_int
with the prototypes
int plus (int n, unsigned int* a, unsigned int* b, unsigned int* c);
void from_int (int n, unsigned int k, unsigned int* a);

A. (12 points) Fill in the following tables by stating for each name whether it is local or
global, and whether it is strong or weak. Cross out any box in the table that does not
apply. For example, cross out the first box in a line if the symbol is not in the symbol
table, or cross out the second box in a line if the symbol is not global (and therefore
neither weak nor strong). Recall that in C, external functions do not need to be declared.

main.c

Symbol Local or Global Strong or Weak
fib

main

fib.c

Symbol Local or Global Strong or Weak
ring

print_bignat
fib

plus

B. (6 points) Now assume that the file bignat.c is compiled and contained in a static
library in archive format, bignat.a with global symbols plus and from_int .

For each of the following gcc commands, state if it
 (A) compiles and links correctly, or
 (B) linking fails due to undefined references, or
 (C) linking fails due to multiple definitions .

Command Result (A, B, or C)
gcc -o fib main.c fib.c bignat.a Result: _________

gcc -o fib bignat.a main.c fib.c Result: _________

gcc -o fib fib.c main.c bignat.a Result: _________

15. Heap Memory Allocation (15 points)
Consider an allocator with the following specification:

a. Uses a single explicit free list.
b. All memory blocks have a size that is a multiple of 8 bytes and is at least 16 bytes
c. All headers, footers, and pointers are 4 bytes in size
d. Headers consist of the block size in the upper 29 bits, a bit indicating if the block

is allocated in the lowest bit (bit 0), and a bit indicating if the previous block is
allocated in the second lowest bit (bit 1).

e. Allocated blocks consist of a header and a payload (no footer)
f. Free blocks consist of a header, two pointers for the next and previous free blocks

in the free list, and a footer at the end of the block.
g. All freed blocks are immediately coalesced.
h. The heap starts with 0 bytes, never shrinks, and only grows large enough to

satisfy memory requests.
i. The heap contains only allocated blocks and free blocks. There are is no space

used for other data or special blocks to mark the beginning and end of the heap.
j. When a block is split, the lower part of the block becomes the allocated part and

the upper part becomes the new free block.
k. Any newly created free block (whether it comes from a call to free, the upper part

of a split block, or the coalescing of several free blocks) is inserted at the
beginning of the free list.

l. All searches for free blocks start at the head of the list and walk through the list in
order.

m. If a request can be fulfilled by using a free block, that free block is used.
Otherwise the heap is extended only enough to fulfill the request. If there is a free
block at the end of the heap, this can be used along with the new heap space to
fulfill the request.

Below you are given a series of memory requests as they might appear in a user's
program. You are asked to show what the heap looks like after each request is completed
using a first fit and a best fit placement policy. The heap is represented as a row of
boxes, where each box is a single block on the heap, and the bottom of the heap is the
left-most box. Simulate the calls to malloc() or free() on the left by marking each block
in the corresponding row. In each block, you should write the total size (including
headers and footers) of the block in bytes and either ’f’ or ’a’ to mark it as free or
allocated, respectively, For example, the following heap contains an allocated block of
size 16, followed by a free block of size 32.

A. (6 points) Simulate the memory requests using FIRST FIT for block
allocation

ptr1 = malloc(32);

ptr2 = malloc(16);

ptr3 = malloc(16);

ptr4 = malloc(40);

free(ptr3);

free(ptr1);

ptr5 = malloc(16);

free(ptr4);

ptr6 = malloc(48);

free(ptr2);

16a 32f

 24a

 24a

B. (6 points) Simulate the memory requests using BEST FIT for block allocation

ptr1 = malloc(32);

ptr2 = malloc(16);

ptr3 = malloc(16);

ptr4 = malloc(40);

free(ptr3);

free(ptr1);

ptr5 = malloc(16);

free(ptr4);

ptr6 = malloc(48);

free(ptr2);

C. (3 points) Mr. Frey's friend, Bob, believes he has discovered a new strategy for
allocating blocks. His strategy is to use the LARGEST free block available to fulfill the
memory allocation request. Using no more than two sentences, describe one possible
advantage of Bob's new strategy.

 24a

 24f

16A. Dynamic Memory Coding -- 15 points
Consider a heap memory allocator that uses an implicit free list. Each memory block,
either allocated or free, has a size that is a multiple of eight (8) bytes. Thus, only the 29
higher order bits in the header and footer are needed to record the block size (in bytes),
which includes the header and footer. The usage of the remaining 3 lower order bits is as
follows:
 bit 0 indicates the use of the current block: 1 for allocated, 0 for free.
 bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.
 bit 2 is unused and is always set to be 0.

Five helper routines are defined to facilitate the implementation of free(void *p).
The functionality of each routine is explained in the comment above the function
definition. Write the letter of the code that correctly completes the function on the line
provided in the function body.

/* given a pointer p to an allocated block, i.e., p is a
 pointer returned by some previous malloc()/realloc () call;
 returns the pointer to the header of the block
*/
void * header(void* p)
{
 void *ptr;
 ____________________;
 return ptr;
}
 A. ptr = p - 1
 B. ptr = (void *)((int *)p - 1)
 C. ptr = (void *)((int *)p - 4)

/* given a pointer to a valid block header or foote r,
 returns the size of the block
*/
int size(void *hp)
{
 int result;
 ____________________________;
 return result;
}

 A. result = (*hp) & (˜7)
 B. result = ((*(char *)hp) & (˜5)) << 2
 C. result = (*(int *)hp) & (˜7)

/* given a pointer p to an allocated block, i.e. p is
 a pointer returned by some previous malloc()/reall oc() call;
 returns the pointer to the footer of the block
*/
void * footer(void *p)
{
 void *ptr;
 ________________________;
 return ptr;
}
 A. ptr = p + size(header(p)) - 8
 B. ptr = p + size(header(p)) - 4
 C. ptr = (int *)p + size(header(p)) - 2

/* given a pointer to a valid block header or foote r,
 returns the usage of the current block,
 1 for allocated, 0 for free
*/
int allocated(void *hp)
{
 int result;
 ______________________;
 return result;
}

 A. result = (*(int *)hp) & 1
 B. result = (*(int *hp) & 0
 C. result = (*(int *)hp) | 1

/* given a pointer to a valid block header,
 returns the pointer to the header of previous b lock in memory
*/
void * prev(void *hp)
{
 void *ptr;
 __________________________;
 return ptr;
}
 A. ptr = hp - size(hp)
 B. ptr = hp - size(hp - 4)
 C. ptr = hp - size(hp - 4) + 4

16B. Dynamic Memory Coding -- 15 points
This problem tests your understanding of pointer arithmetic, pointer dereferencing, and malloc
implementation. Jimmy J. Johnsom has implemented a simple explicit-list allocator. You may
assume that his implementation follows the usual restrictions that you had to comply with in
Project 6 such as the 8-byte alignment rule.

The following is a description of JJJ's block structure:

 • HDR - Header of the block (4 bytes)
 • PAYLOAD - Payload of the block (arbitrary size)
 • FTR - Footer of the block (4 bytes)

The size of the payload of each block is stored in the header and the footer of the block. Since
there is an 8-byte alignment requirement, the least significant of the 3 unused bits is used to
indicate whether the block is free (0) or allocated (1).

For this problem, you can assume that:
 • sizeof(int) == 4 bytes
 • sizeof(char) == 1 byte
 • sizeof(short) == 2 bytes
 • sizeof(long) == 4 bytes
 • The size of any pointer (e.g. char *) is 4 bytes.
Note that JJJ is working on a 32-bit machine. Also, assume that the block pointer bp
points to the first byte of the payload.

Your task is to help JJJ compute the correct payload size (using the function
getPayloadSize()), by indicating which of the following implementations of getHeader
maro are correct. For each of the proposed solutions listed below, fill in the blank with either C
for correct, or I for incorrect.

#define GET_SIZE(p) (GET_HDR(p) & ˜0x7)
/* get_payload_size returns the actual size of payl oad.
 bp is pointing to the first byte of a block
 returned from JJJ'ss malloc() */

int get_payload_size(void *bp)
{
 return (int)(GET_SIZE(bp));
}

1. __________ #define GET_HDR(p) (*(int *)((int *)(p) - 1))
2. __________ #define GET_HDR(p) (*(int *)((char *) (p) - 1))
3. __________ #define GET_HDR(p) (*(int *)((char **)(p) - 1))
4. __________ #define GET_HDR(p) (*(char *)((int)(p) - 1)
5. __________ #define GET_HDR(p) (*(long *)((long *)(p) - 1)
6. __________ #define GET_HDR(p) (*(int *)((int)(p) - 4))
7. __________ #define GET_HDR(p) (*(int *)((short)(p) - 2))
8. __________ #define GET_HDR(p) (*(short *)((int *)(p) - 1))

HDR PAYLOAD FTR

17A. Process Control (18 points)
Carefully read the C code below, then answer the questions which follow

void handler(int sig) {
 printf("H\n");
 exit(0);
}

int main() {
 pid_t pid1, pid2;
 signal(SIGUSR1,handler);
 pid1 = fork();
 if (pid1 == 0) {
 pid2 = fork();
 printf("A\n");
 if (pid2 == 0) {
 printf("B\n");
 exit(0);
 }
 printf("C\n");
 kill(pid2,SIGUSR1);
 exit(0);
 }
 waitpid(pid1, NULL, 0)
 printf("D\n");
 exit(0);
}

Mark the top of each column that represents a valid possible output of this program with
‘Yes’ and each column which is impossible with ‘No’

A A A A A A
A C B A A A
B D H B C C
C H C C B H
D D H D D
 D

17B. Process Control (8 points)
Consider the following C program, with line numbers:

1 int main() {
2 int counter = 0;
3 int pid;
4
5 while (counter < 4 && !(pid = fork())) {
6 counter += 2;
7 printf("%d", counter);
8 }
9
10 if (counter > 0) {
11 printf("%d", counter);
12 }
13
14 if (pid) {
15 waitpid(pid, NULL, 0);
16 counter += 3;
17 printf("%d", counter);
18 }
29 }

Use the following assumptions to answer the questions:
• All processes run to completion and no system calls will fail.
• printf() immediately prints to the screen before returning.
• Logical operators such as && evaluate their operands from left to right and only
evaluate the smallest number of operands necessary to determine the result. (short-circuit
evaluation)

A. List all possible outputs of the program in the following blanks.
(You might not use all the blanks.)
_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

_________________________ _________________________

B. If we modified line 10 of the code to change the > comparison to >=, it would cause
the program flow to print out zero counter values. With this change, how many possible
outputs are there? (Just give a number, you do not need to list them all.)

NEW NUMBER OF POSSIBLE OUTPUTS = __________

17C. Signals (8 points)
Consider the following C program:

void handler1(int sig) {
 printf("Phantom\n");
 exit(0);
}

int main()
{
 pid_t pid1;
 signal(SIGUSR1, handler1);
 if((pid1 = fork()) == 0) {
 printf("Ghost\n");
 exit(0);
 }

 kill(pid1, SIGUSR1);
 printf("Ninja\n");
 return 0;
}

Use the following assumptions to answer the questions:
• All processes run to completion and no system calls will fail.
• printf() immediately prints to the screen before returning.

Mark each column that represents a valid possible output of this program with ‘Yes’ and
each column which is impossible with ‘No’.

Phantom Ninja Ghost Ninja Ninja
Ninja Phantom Ninja Ghost Phantom

 Ghost Phantom Ninja

18. Locality (9 points)

The three functions below (init1 , init2 , and init3) refer to the definitions in the
box in the upper-left. All perform the same operation -- initializing an array of
PERSONs -- with varying degrees of spatial locality. Order the functions with respect to
the spatial locality enjoyed by each. I.e. The function which best applies the concept of
spatial locality should be listed first, the worst should be listed last.

Write the function names on the lines provided in the order in which they best consider
the concept of spatial locality

a. __

b. __

c. __

#define N 1000
#define SPACE ' '

typedef struct {
 char initials[3];
 char ID[3];
} PERSON;

PERSON people[N];

void init1(PERSON *p, int n)
{
 int k, j;

 for (k = 0; k < n; k++) {
 for (j = 0; j < 3; j++)
 p[k].initials[j] = SPACE;
 for (j = 0; j < 3; j++)
 p[k].ID[j] = SPACE;
 }
}

void init2 (PERSON *p, int n)
{
 int k, j;

 for (k = 0; k < n; k++) {
 for (j = 0; j < 3; j++) {
 p[k].initials[j] = SPACE;
 p[k].ID[j]= SPACE;
 }
 }
}

void init3(PERSON *p, int n)
{
 int k, j;

 for (j = 0; j < 3; j++) {
 for (k = 0; k < n; k++)
 p[k].initials[j] = SPACE;
 for (k = 0; k < n; k++)
 p[k].ID[j] = SPACE;
 }
}

