CMSC 313 Fall2009
Exam 3
December 18, 2009

Name Score

UMBC Username

Notes:
a. Please write clearly. Unreadable answers recavaedit.

b. There are no intentional syntax errors in any quaeided with this
exam. If you think you see an error that wouleetffyour answer,

please bring it to my attention



Multiple Choice (2 points each)
Write the letter of the BEST answer on the lineved for each question.

1. When you run two programs (processeff)@rsame Linux machine, why do
you not have to worry about them using the samaipaymemory?

A. The programmers who wrote the programs kneavtmd using the same
addresses and were careful not to do so.

B. The virtual addresses used by the processdsaanslated to non-overlapping
physical addresses.

C. Only one program really runs at a time, andpttngsical memory is
saved/restored as part of each context switch.

D. The linker carefully lays out address spacesv/tmd overlap of physical
memory

2. The most important job of a linker is

. code optimizing

. symbol resolution and relocation

. providing information for the debugger

. matching function prototypes with function defiions

o0 ®>

3. In the memory hierarchy, leke$ considered a cache for leksll because
. it's smaller and faster

. it's bigger and slower

. it's always in memory

. it's always on the CPU chip

o0 ®>

4, A "page fault" occurs when

. your process makes a system call to the kernel

. your process access a virtual page that isnnghysical memory
. your process calls a C library function

. your process accesses memory that belongslitteeent process

o0Om>

5. Which of the following techniques is tagtest for organizing the heap's free list?

. explicit free list

. implicit free list

. segregated free lists

. they're all about the same

o0 >

6. In a heap memory allocator, "interradfinentation” refers to
. wasted space within an allocated block

. overhead (headers, footers, etc) within a lileek

. free, but unusable blocks within the heap

. "holes" in the heap

o0 >



7. A zombie process is created when

A. a child process terminates, but its parent @seaontinues to run
B. a parent process terminates, but its childggscontinues to run
C. when a process is sent the SIGZOMBIE signal
D. the user types "control-Z" while the processuisning
8. A signal handler is
A. a function in the kernel that sends signals
B. a function in the kernel that executes whenoagss receives a signal
C. a user function that sends signals
D. a user function that executes when a processves a signal
9. Suppose a function declares a localblarrramedry_i nt of typei nt .

Which of the following (if any) is/are dangerousGfR?

. Returning&my _i nt

. Assigning the valugy _i nt to a global variable
. Printing the address afy _i nt to the screen

. None of the above

o0 m>

10. The term "symbol reference" refers to

. using the name of variable or function

. defining and initializing a local variable

. passing a parameter to a function by reference
. defining and initializing a global variable

o0 o>

11. With respect to disk storage, the teotational latency" refers to
A. The number of sectors that pass under thewet€e/head on each revolution
B. The time required to wait for the desired setdgass under the read/write head
C. The time it takes for the disk to make one cleteprevolution
D. The time required to wait for the desired trézlpass under the read/write head

12. The system cakecl () is usedto
A. create a child process
B. load and execute a program
C. execute special code in the kernel
D. switch to "kernel mode”

13. RAM is considered to be "volatile memdrgcause
A. its state is occasionally changed without wagni
B. its state is lost when power is removed
C. its state fluctuates, but is always recoverable
D. none of the above



14. Symbols and Linking (18 points)

Consider the following three files, main.c, fibamd bignat.c, then answer the questions
on the following page. Note that the functionabifythe code is irrelevant to the
guestion, so do not spend lots of time determimihgt the code does.

/[* main.c */

void fib (int n);

int main (int argc, char** argv)

intn=0;
sscanf(argv[1], "%d", &n);
fib(n);

[* fib.c */

#define N 16

static unsigned int ring[3][N];

static void print_bignat(unsigned int* a)

inti;

for (I=N-1;1>=0; i--)
[* print a[i] as unsigned int */
printf("%u ", a[i]);

printf("\n");

}/oid fib (int n)

int i, carry;

from_int(N, O, ring[0]); /* fib(0) = 0 */
from_int(N, 1, ring[1]); /* fib(1) =1 */
for (1=0;1<=n-2; i++) {

carry =
plus(N, ring[i%3], ring[(i+1)%3], ring[(i+2)%3])
if (carry) {
printf("Overflow at fib(%d)\n", i+2);
exit(0);

print_bignat(ring[n%3]);
}
Furthermore assume that a fidgnat.c defines functionplus andfrom_int
with the prototypes
int plus (int n, unsigned int* a, unsigned int* b, unsigned int* c);
void fromint (int n, unsigned int k, unsigned int* a);



A. (12 points)Fill in the following tables by stating for eacame whether it is local or
global, and whether it is strong or weak. Crossamyt box in the table that does not
apply. For example, cross out the first box ime lif the symbol is not in the symbol
table, or cross out the second box in a line ifyr@bol is not global (and therefore
neither weak nor strong). Recall that in C, exteriuactions do not need to be declared

mai n. c

Symbol Local or Global Strong or Weak

fib

main

fib.c

Symbol Local or Global Strong or Weak

ring

print_bignat

fib

plus

B. (6 points)Now assume that the filagnat.c  is compiled and contained in a static
library in archive formatbignat.a  with global symbolplus andfrom_int

For each of the following gcc commands, state if it
(A) compiles and links correctly, or
(B) linking fails due to undefined references, or
(C) linking fails due to multiple definitions .

Command Result (A, B, or C)
gcc -o fib main.c fib.c bignat.a Result:

gcc -o fib bignat.a main.c fib.c Result:

gcc -o fib fib.c main.c bignat.a Result:



15. Heap Memory Allocation (15 points)

Consider an allocator with the following specificat

apop

i 0]

Uses a single explicit free list.

All memory blocks have a size that is a multiple8dfytes and is at least 16 bytes
All headers, footers, and pointers are 4 byte&zia s

Headers consist of the block size in the upperi9 & bit indicating if the block
is allocated in the lowest bit (bit 0), and a biicating if the previous block is
allocated in the second lowest bit (bit 1).

Allocated blocks consist of a header and a payloadooter)

Free blocks consist of a header, two pointersifemext and previous free blocks
in the free list, and a footer at the end of thexkl

All freed blocks are immediately coalesced.

The heap starts with 0 bytes, never shrinks, ahgdgmows large enough to
satisfy memory requests.

The heap contains only allocated blocks and freelsl There are is no space
used for other data or special blocks to mark #ggriming and end of the heap.
When a block is split, the lower part of the bldidcomes the allocated part and
the upper part becomes the new free block.

Any newly created free block (whether it comes framall to free, the upper part
of a split block, or the coalescing of several fiobecks) is inserted at the
beginning of the free list.

All searches for free blocks start at the headheflist and walk through the list in
order.

. If a request can be fulfilled by using a free bloitlat free block is used.

Otherwise the heap is extended only enough tdlIfthf request. If there is a free
block at the end of the heap, this can be usedjalatth the new heap space to
fulfill the request.



Below you are given a series of memory requestsesmight appear in a user's
program. You are asked to show what the heap likdksfter each request is completed
using dfirst fit and abest fit placement policy. The heap is represented as afow
boxes, where each box is a single block on the,leeapthe bottom of the heap is the
left-most box. Simulate the calls to malloc( )i@e( ) on the left by marking each block
in the corresponding row. In each block, you stiaulite the total size (including
headers and footers) of the block in bytes anaeithor’a’ to mark it as free or
allocated, respectively, For example, the foll ap contains an allocated block of
size 16, followed by a free block of size 3 16¢ 32f

A. (6 points ) Simulate the memory requests usiki®ST FIT for block
allocation

ptrl = malloc(32);

ptr2 = malloc(16); 24a

ptr3 = malloc(16);

ptr4 = malloc(40);

free(ptr3);

free(ptrl);

ptr5 = malloc(16);

free(ptr4); 24a

ptr6é = malloc(48);

free(ptr2);




B. (6 points )Simulate the memory requests usBgST FIT for block allocation

ptrl = malloc(32);

ptr2 = malloc(16);

ptr3 = malloc(16);

ptr4 = malloc(40);

free(ptr3); 24f

free(ptrl);

ptr5 = malloc(16);

free(ptrd);

ptr6é = malloc(48); 24a

free(ptr2);

C. (3 points) Mr. Frey's friend, Bob, believes he has discoveregw strategy for
allocating blocks. His strategy is to use the LARST free block available to fulfill the
memory allocation requestJsing no more than two sentenceslescribe one possible
advantage of Bob's new strategy.




16A. Dynamic Memory Coding -- 15 points
Consider a heap memory allocator that usasnaticit free list. Each memory block,
either allocated or free, has a size that is aiptelof eight (8) bytes. Thus, only the 29
higher order bits in the header and footer are @@ ¢al record the block size (in bytes),
which includes the header and footer. The usagieeofemaining 3 lower order bits is as
follows:

bit 0 indicates the use of the current block: rladitocated, O for free.

bit 1 indicates the use of the previous adjacttkb 1 for allocated, O for free.

bit 2 is unused and is always set to be O.

Five helper routines are defined to facilitate ithplementation of r ee(voi d *p).
The functionality of each routine is explainediie tomment above the function
definition. Write the letter of the code that correctly completes the funcbarthe line
provided in the function body.

[* given a pointer p to an allocated block, i.e., p isa
pointer returned by some previous malloc()/realloc () call;
returns the pointer to the header of the block

*/

void * header(void* p)

{
void *ptr;
return ptr; ,

}

Aptr=p-1
B. ptr = (void *)((int *)p - 1)
C. ptr = (void *)((int *)p - 4)

[* given a pointer to a valid block header or foote r,
returns the size of the block

*/

int size(void *hp)

{
int result;
return result; ’

}

A. result = (*hp) & (°7)
B. result = ((*(char *)hp) & (°5)) << 2
C. result = (*(int *)hp) & (°7)



/* given a pointer p to an allocated block, i.e. p
a pointer returned by some previous malloc()/reall
returns the pointer to the footer of the block

*/
void * footer(void *p)
{
void *ptr;
return ptr;
}

A. ptr = p + size(header(p)) - 8
B. ptr = p + size(header(p)) - 4
C. ptr = (int *)p + size(header(p)) - 2

[* given a pointer to a valid block header or foote
returns the usage of the current block,
1 for allocated, O for free

*/
int allocated(void *hp)
L
int result;
return result;
}

A. result = (*(int *)hp) & 1
B. result = (*(int *hp) & O
C. result = (*(int "hp) | 1

[* given a pointer to a valid block header,
returns the pointer to the header of previous b

*/

void * prev(void *hp)

{

void *ptr;

return ptr;

A. ptr = hp - size(hp)
B. ptr = hp - size(hp - 4)
C.ptr=hp-size(hp-4) +4

oc() call;

lock in memory



16B. Dynamic Memory Coding -- 15 points

This problem tests your understanding of pointgh@uetic, pointer dereferencing, and malloc
implementation. Jimmy J. Johnsom has implementthple explicit-list allocator. You may
assume that his implementation follows the usustticions that you had to comply with in
Project 6 such as the 8-byte alignment rule.

The following is a description of JJJ's block stove:
HDR PAYLOAD FTR

* HDR - Header of the block (4 bytes)
* PAYLOAD - Payload of the block (arbitrary size)
* FTR - Footer of the block (4 bytes)

The size of thgpayload of each block is stored in the header and the fadtthe block. Since
there is an 8-byte alignment requirement, the Isigsiificant of the 3 unused bits is used to
indicate whether the block is free (0) or allocated

For this problem, you can assume that:

* sizeof(int) == 4 bytes

* sizeof(char) == 1 byte

* sizeof(short) == 2 bytes

* sizeof(long) == 4 bytes

» The size of any pointer (e.ghar * ) is 4 bytes.
Note that JJJ is working on a 32-bit machine. Atsmsume that the block pointgy
points to the first byte of the payload.

Your task is to help JJJ compute the correct palysiee (using the function
getPayloadSize() ), by indicating which of the following implemeni@ts of getHeader
maro are correct. For each of the proposed sokitisted below, fill in the blank with eith€r
for correct, ol for incorrect.

#define GET_SIZE(p) (GET_HDR(p) & "0x7)

[* get_payload_size returns the actual size of payl oad.
bp is pointing to the first byte of a block
returned from JJJ'ss malloc() */

int get_payload_size(void *bp)
return (int)(GET_SIZE(bp));

#define GET_HDR(p) (*(int *)((short)( p) - 2))
#define GET_HDR(p) (*(short *)((int * )(p) - 1))

}

1. #define GET_HDR(p) (*(int *)((int *)( p) - 1))
2. #define GET_HDR(p) (*(int *)((char *) (p) - 1)
3. #define GET_HDR(p) (*(int *)((char ** )(p) - 1))
4. #define GET_HDR(p) (*(char *)((int)(p -1

5. #define GET_HDR(p) (*(long *)((long * )(p) - 1)
6. #define GET_HDR(p) (*(int *)((int)(p) -4

7.

8.



17A. Process Control (18 points)

Carefully read the C code below, then answer ttestipns which follow

void handler(int sig) {
printf("H\n");
exit(0);

int main() {
pid_t pid1, pid2;
signal(SIGUSR1,handler);
pidl = fork();
if (pid1 == 0) {
pid2 = fork();
printf("A\n");
if (pid2 == 0) {
printf("B\n");
exit(0);

}

printf("C\n");
kill(pid2,SIGUSR1);
exit(0);

}
waitpid(pidl, NULL, 0)
printf("D\n");
exit(0);
}

Mark the top of each column that represents a y@igkible output of this program with
‘Yes’ and each column which is impossible with ‘No’

IO 0>

O0w > >
O0OI® >
O I0Om> >
OwmO|> >
OI0r>r




17B. Process Control (8 points)
Consider the following C program, with line numbers

int main() {
int counter = 0;
int pid,;

counter += 2;

1

2

3

4

5  while (counter < 4 && !(pid = fork())) {
6

7 printf("%d", counter);

8

9

10 if (counter > 0) {

11 printf("%d", counter);
12

13

14 if (pid) {

15 waitpid(pid, NULL, 0);
16 counter += 3;

17 printf("%d", counter);
18

29}

Use the following assumptions to answer the questio

* All processes run to completion and no systerns el fail.

* printf() immediately prints to the screen befoeturning.

* Logical operators such as && evaluate their opdsafrom left to right and only
evaluate the smallest number of operands necesdgtermine the result. (short-circuit
evaluation)

A. List all possible outputs of the program in théowing blanks.
(You might not use all the blanks.)

B. If we modified line 10 of the code to change theomparison to >=, it would cause
the program flow to print out zero counter valud4th this change, how many possible
outputs are there? (Just give a number, you doeed to list them all.)

NEW NUMBER OF POSSIBLE OUTPUTS =



17C. Signals (8 points)

Consider the following C program:

void handlerl(int sig) {
printf("Phantom\n”);

exit(0);

int main()

pid_t pidl;
signal(SIGUSR1, handlerl);

if((pid1 = fork()) == 0) {

printf("Ghost\n");
exit(0);

kill(pid1, SIGUSR1);
printf("Ninja\n");

return O;

}

Use the following assumptions to answer the questio
* All processes run to completion and no systerts edll fail.
* printf() immediately prints to the screen befoeturning.

Mark each column that represents a valid possiput of this program with ‘Yes’ and
each column which is impossible with ‘No'.

Phant om Ni nj a Ghost Ni nj a Ni nj a
Ni nj a Phant om Ni nj a Ghost Phant om
Ghost Phant om Ni nj a




18. Locality (9 points)

The three functions belovinftl

, andinit3 ) refer to the definitions in the

box in the upper-left. All perform the same opiemat- initializing an array of
PERSONSs -- with varying degrees of spatial local@rder the functions with respect to
the spatial locality enjoyed by each. l.e. Thection which best applies the concept of
spatial locality should be listed first, the woskbuld be listed last

#define N 1000
#define SPACE "'

typedef struct {
char initials[3];
char ID[3];

} PERSON;

PERSON people[N];

void init1(PERSON *p, int n)

{
intk, j;

for (k =0; k < n; k++) {
for j =0;] < 3;j++)
p[k].initials[j] = SPACE;
for j =0;] < 3;j++)
p[k].ID[j] = SPACE;

void init2 (PERSON *p, int n)

{
intk, j;

for (k =0; k <n; k++) {
for j=0;j<3;j++){
p[k].initials[j] = SPACE;
p[K].ID[j]= SPACE;

void init3(PERSON *p, int n)

{
intk, j;

for (j=0;j<3;j++){
for (k = 0; k < n; k++)
p[k].initials[j] = SPACE;
for (k = 0; k < n; k++)
p[k].ID[j] = SPACE;

Write the function names on the lines providechim ¢rder in which they best consider

the concept of spatial locality




