CMSC 313, Fall 2010
Project 5 The Buffer Bomb
Assigned: Mon., Nov. 15, Due: Tues., Nov. 30, 11:59PM

I ntroduction

This assignment helps you develop a detailed understardditite calling stack organization on an 1A32
processor. It involves applying a serieshofffer overflow attacken an executable filbufbomb found in
Mr. Frey’s public directory for this projectdéfs/umbc.edu/users/fir/frey/pub/313/proj5)

Note: In this lab, you will gain firsthand experience with one of tmethods commonly used to exploit

security weaknesses in operating systems and networkrse®@er purpose is to help you learn about the
runtime operation of programs and to understand the nafiufleisoform of security weakness so that you

can avoid it when you write system code. We do not condonedbetithese or any other form of attack to
gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

You may work in a group of up to two people in solving the probefor this assignment. The only
“hand-in” will be an automated logging of your successfuaeks. Any clarifications and revisions to the
assignment will be posted on the course Web page.

Hand Out I nstructions

Start by copyingouflab-handout.tar from Mr. Frey’s public directory to a (protected) directary
which you plan to do your work. Then give the commaralr“ xvf buflab-handout.tar ", This
will cause a number of files to be unpacked in the directory:

MAKECOOKIE: Generates a “cookie” based on your team name.
BUFBOMB: The code you will attack.

SENDSTRING A utility to help convert between string formats.

All of these programs are compiled to run on Linux machines.

Because théufbomb sends messages to your instructor, you may only work on th&0IBL systems,
as with project 4.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localadogy.

Team Name and Cookie

You should create a team name for the one or two people in youpgf the following form:

e “ID” where ID is your UMBC user ID taken from your UMBC email address, if yae working
alone, or

e “ID{+ID5" where ID is the UMBC user ID of the first team member afd, is the UMBC user
ID of the second team member. Note tklVIBC user nameis NOT your UBMC campus id as in
AB12345.

You should choose a consistent ordering of the IDs in thergkémrm of team name. Teambdb+sue ”
and “sue+bob " are considered distinctYou must follow this scheme for generating your team name.
Our grading program will only give credit to those people whose UMBC user 1Ds can be extracted
from the team names.

A cookieis a string of eight hexadecimal digits that is (with high lpaility) unique to your team. You
can generate your cookie with timeakecookie program giving your team name as the argument. For
example:

unix> ./ makecooki e bob+sue
0x1d3ab192

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

TheBUFBOMB program reads a string from standard input with a funcgetbuf having the following C
code:

int getbuf()

1

2

3 char buf[12];
4 Gets(buf);

5 return 1;
6}

The functionGets is similar to the standard library functiagets —it reads a string from standard input
(terminated by\n ’ or end-of-file) and stores it (along with a null terminatetf)the specified destination.
In this code, the destination is an array nanbed having sufficient space for an 11 character string plus
the null terminator.

NeitherGets norgets has any way to determine whether there is enough space atshiaation to store
the entire string. Instead, they simply copy the entirangtrpossibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user etbuf is no more than 11 characters long, it is clear tpetouf will
return 1, as shown by the following execution example:

unix> ./ buf bonb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

unix> ./ buf bonb
Type string: This string is too |ong
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffercaflyi causes the program state (the stack) to
be corrupted, leading to a memory access error. Your task ietmore clever with the strings you feed
BUFBOMB so that it does more interesting things. These are caligtbitstrings.

BurFBoOMB takes several different command line arguments:

-t TEAM Operate the bomb for the indicated team. You should alwaygige this argument for several
reasons:
e Itis required to log your successful attacks.

e BUFBOMB determines the cookie you will be using based on your teanenarst as theMAKE -
COOKIE program does.

¢ We have built features intBuFBOMB so that some of the key stack addresses you will need to
use depend on your team’s cookie.

-s . Send your solution to the grading server. Once you have materthe appropriate exploit string for
one of the levels, rerun your bomb with this command line argaot to have your exploit string sent
to the grading server. It should then appear on the bombsstedb page and you will receive credit
for that level.

-h : Print list of possible command line arguments

-n : Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograBENDSTRINGcan help you generate thesav strings. Its input is dex-formatted
string. In this format, each byte value is represented byhewodigits. For example, the strin@12345 "
could be entered in hex format a80' 31 32 33 34 35 .” (Recall that the ASCII code for decimal digit
x i1s 0x3 x.) Non-hex digit characters are ignored, including the kéim the example shown.

If you generate a hex-formatted exploit string in the &bkploit.txt , you can apply the raw string to
BUFBOMB in several different ways:
1. You can set up a series of pipes to pass the string threagIbSTRING
unix> cat exploit.txt | ./sendstring | ./bufbonmb -t bovik

2. You can store the raw string in a file and use 1/O redirectosupply it toBUFBOMB:

unix> ./sendstring < exploit.txt > exploit-raw.txt
unix> ./ bufbonb -t bovik < exploit-raw txt

This approach can also be used when runmngsomB from within GDB:

unix> gdb buf bonb
(gdb) run -t bovik < exploit-rawtxt

One important point: your exploit string must not contairtebyalueOx0A at any intermediate position,
since this is the ASCII code for newline\if'). When Gets encounters this byte, it will assume you
intended to terminate the stringeSDSTRING will warn you if it encounters this byte value.

When you correctly solve one of the levetsjFBomMB will automatically send a notification to our grading
server. The server will test your exploit string to make stireally works, and it will update the lab web
page indicating that your team (listed by cookie) has cotedl¢his level.

Unlike project 4 (the binary bomb), there is no penalty forkimg mistakes in this project. Feel free to fire
away atBUFBOMB with any string you like.

Level 0. Candle (5 pts)

The functiongetbuf is called withinsuFBOMB by a function nametest having the following C code:

1 void test()

2 {

3 int val;

4 volatile int local = Oxdeadbeef;

5 entry_check(3); / * Make sure entered this function properly */
6 val = getbuf();

7 [+ Check for corrupted stack */

8 if (local !'= Oxdeadbeef) {

9 printf("Sabotaged!: the stack has been corrupted\n™);

4

10
11 else if (val == cookie) {

12 printf("Boom!: getbuf returned 0x%x\n", val);
13 validate(3);

14 }

15 else {

16 printf("Dud: getbuf returned 0x%x\n", val);
17 }

18 }

Whengetbuf executes its return statement (line Syettbuf), the program ordinarily resumes execution
within functiontest (at line 8 of this function). Within the fildbufbomb , there is a functiorsmoke
having the following C code:

void smoke()

{
entry_check(0); / * Make sure entered this function properly */
printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);
}

Your task is to geBUFBOMB to execute the code famoke whengetbuf executes its return statement,
rather than returning tbest . You can do this by supplying an exploit string that overesithe stored
return address in the stack frame fpgtbuf with the address of the first instruction smoke. Note that
your exploit string may also corrupt other parts of the staigte, but this will not cause a problem, since
smoke causes the program to exit directly.

Some Advice:

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a diassembled version BUFBOMB.

e Be careful about byte ordering.

e You might want to useDB to step the program through the last few instructiongetbuf to make
sure it is doing the right thing.

e The placement obuf within the stack frame fogetbuf depends on which version @fcc was
used to compildufbomb . You will need to pad the beginning of your exploit string kvihe proper
number of bytes to overwrite the return address. The valiidsese bytes can be arbitrary.

Level 1. Sparkler (10 pts)

Within the filebufbomb there is also a function naméidz having the following C code:

void fizz(int val)

{
entry_check(1); / * Make sure entered this function properly */
if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);
} else
printf("Misfire: You called fizz(0x%x)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&@UFBOMB to execute the code fdizz rather than returning to
test . In this case, however, you must make it appediizn as if you have passed your cookie as its
argument. You can do this by encoding your cookie in the gmoriate place within your exploit string.

Some Advice:

¢ Note that the program won't really cdizz —it will simply execute its code. This has important
implications for where you want to place your cookie on treckt

Level 2. Firecracker (15 pts)

A much more sophisticated form of buffer attack involvespyimg a string that encodes actual machine
instructions. The exploit string then overwrites the rataddress with the starting address of these instruc-
tions. When the calling function (in this cagetbuf) executes itset instruction, the program will start
executing the instructions on the stack rather than ratgecnWith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stacKlexictheexploitcode. This style of attack

is tricky, though, because you must get machine code ontstén and set the return address to the start of
this code.

Within the filebufbomb there is a function namdaang having the following C code:
int global_value = O;

void bang(int val)

{
entry_check(2); / * Make sure entered this function properly */
if (global_value == cookie) {
printf("Bang!: You set global_value to Ox%x\n", global_va lue);
validate(2);
} else
printf("Misfire: global_value = 0x%x\n", global_value);
exit(0);
}

Similar to Levels 0 and 1, your task is to griFBOMB to execute the code fdtxang rather than returning to
test . Before this, however, you must set the value of the globahlste global_value to your team’s

6

cookie. Your exploit code should sglobal_value , push the address dfang on the stack, and then
execute aet instruction to cause a jump to the code fiang .

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within getbuf and run to this breakpoint. Determine parameters such asddeess of
global_value and the location of the buffer.

e Determining the byte encoding of instruction sequencesangdhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code dibataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBiDUMP. You
should be able to get the exact byte sequence that you wél &gphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on the GL machine, and make sureipolude the proper team name on
the command line tBUFBOMB.

¢ Our solution requires 16 bytes of exploit code. Fortunatiigre is sufficient space on the stack, so
we can overwrite the stored value @Wiebp. This stack corruption will not cause any problems, since
bang causes the program to exit directly.

e Watch your use of address modes when writing assembly codge tRatmovl $0x4, %eax
moves thevalue 0x00000004 into register¥%eax; whereasmovl 0x4, %eax moves the value
at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjmp or acall instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usettbe instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpetacdode for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting the saved value of regist&ebpand the return address.

The most sophisticated form of buffer overflow attack cautbesprogram to execute some exploit code
that patches up the stack and makes the program return toigead calling function {est in this case).
The calling function is oblivious to the attack. This styfeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return address ttattietthis code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that iglausegetbuf to return your cookie back to
test , rather than returning the value 1. You can see in the code$br that this will cause the program

to go “Boom!.” Your exploit code should set your cookie as the return @ahestore any corrupted state,
push the correct return address on the stack, and execate mstruction to really return tbest

Some Advice:

¢ In order to overwrite the return address, you must also oxut@whe saved value dfoebp. However,
it is important that this value is correctly restored befgos return tatest . You can do this by either
1) making sure that your exploit string contains the corredtie of the saveoebpin the correct
position, so that it never gets corrupted, or 2) restore tireect value as part of your exploit code.
You'll see that the code faest has some explicit tests to check for a corrupted stack.

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such asathed return address
and the saved value ébebp.

e Again, let tools such ascc andosJbumMpdo all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your maghyoer compiler, and even your team’s
cookie. Do all of your work on the GL machine, and make sureipolude the proper team name on
the command line tBUFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done saufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

If you have completed the first four levels, you have earnegdifits. You have mastered the principles
of the runtime stack operation, and you have gained firstleapeérience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. Yauwaglcome to stop right now.

The next level is for those who want to push themselves begomdhaseline expectations for the course,
and who want to face a challenge in designing buffer overfittacks that arise in real life. This part of the
assignment only counts 10 points, even though it requireg afount of work to do, so don’t do it just for
the points.

From one run to another, especially by different users, Kaetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesatbfenvironment variables are placed near the
base of the stack when a program starts executing. Envimhwagiables are stored as strings, requiring
different amounts of storage depending on their values.sTthe stack space allocated for a given user
depends on the settings of his or her environment variabBtack positions also differ when running a

program undeGDB, SinceGDB uses stack space for some of its own state.

In the code that callgetbuf , we have incorporated features that stabilize the stacthagdhe position of
getbuf ’s stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addresshoff and the exact saved value @febp. If you tried to use

8

such an exploit on a normal program, you would find that it veoskme times, but it causes segmentation
faults at other times. Hence the name “dynamite’—an expdodeveloped by Alfred Nobel that contains
stabilizing elements to make it less prone to unexpectetbsims.

For this level, we have gone the opposite direction, makimgstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explodivat is notoriously unstable.

When you rumssuFBOMB with the command line flag-t ,” it will run in “Nitro” mode. Rather than calling
the functiongetbuf , the program calls the slightly different functigetbufn

int getbufn()

{
char buf[512];
Gets(buf);
return 1,

}

This function is similar tagetbuf , except that it has a buffer of 512 characters. You will ndesl &ddi-
tional space to create a reliable exploit. The code thas gaitbufn first allocates a random amount of
storage on the stack (using library functiafioca) that ranges between 0 and 127 bytes. Thus, if you
were to sample the value @bebp during two successive executions gdtbufn , you would find they
differ by as much as-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executegetbufn 5 times, each with a different stack offset. Your exploitrggrmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®mgain, your job for this level is to supply an
exploit string that will causgetbufn to return your cookie back to test, rather than return theedl.
You can see in the code for test that this will cause the progeago ‘KABOOM?! Your exploit code should
set your cookie as the return value, restore any corruptgd,gtush the correct return location on the stack,
and execute eet instruction to really return téestn

Some Advice:

e You can use the prograENDSTRINGt0 send multiple copies of your exploit string. If you have a
single copy in the fileexploit.txt , then you can use the following command:

unix> cat exploit.txt | ./sendstring -n 5| ./bufbonmb -n -t bovik

You must use the same string for all 5 executiongetbufn . Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cdae90). You
can place a long sequence of these at the beginning of yoloiezpde so that your code will work
correctly if the initial jump lands anywhere within the seqge.

e You will need to restore the saved value%gbpin a way that is insensitive to variations in stack
positions.

Hand-In Notes

Hand-in occurs when you correctly solve a level and use th€ tommand line flag. The program sends a
message containing your team name (be sure to settthecommand line flag properly) and your exploit
string to the grading server. You will be informed of this ByFBoMB. Upon receiving the message, the
server will validate your string and update the lab web pafpeL should check this page a few minutes after
your submission to make sure your string has been validgtégou really solved the level, your string
shouldbe valid.]

The lab web page isttp://userpages.umbc.edu/"cmsc313/bufbombstatus.ht mi.

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivesbid message.

Have fun!

Generating Byte Codes

UsingGccas an assembler amBJbDUMPas a disassembler makes it convenient to generate the hyjgs co
for instruction sequences. For example, suppose we writke &Xfample.s containing the following
assembly code:

Example of hand-generated assembly code

pushl $0x89abcdef # Push value onto stack

addl $17,%eax # Add 17 to %eax

.align 4 # Following will be aligned on multiple of 4
.long Oxfedcha98 # A 4-byte constant

.long 0x00000000 # Padding

The code can contain a mixture of instructions and data. Wingtto the right of a#' character is a
comment. We have added an extra word of all Os to work arouhgrcoming inosJDuMPto be described
shortly.

We can now assemble and disassemble this file:

unix> gcc -c exanple.s
unix> obj dunp -d exanple.o > exanple.d

The generated filexample.d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5: 83 cO0 11 add $0x11,%eax

8: 98 cwitl Obj dunp tries to interpret
9: ba dc fe 00 00 mov $0xfedc,%edx these as instructions

Each line shows a single instruction. The number on thenelitates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. silwe can see that
the instructionpushl $0x89ABCDEF has hex-formatted byte cod® ef cd ab 89

10

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the filxample.o as
instructions, but these bytes actually correspond to ddédée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe . This is a byte-reversed version of the data wOx6cFEDCBA98
This byte reversal represents the proper way to supply theskss a string, since a little endian machine
lists the least significant byte first. Note also that it ongngrated two of the four bytes at the end with
value00. Had we not added this paddingpibumMpP gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omithe final 0's) as:

68 ef cd ab 89 83 cO 11 98 ba dc fe

11

