
CMSC 313, Fall 2010
Project 3: Manipulating Bits

Assigned: Oct. 18, Due: Wed., Oct. 27, 11:59PM

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.”Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in workingyour way through them.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page.

Hand Out Instructions

Start by copyingdatalab-handout.tar from Mr. Frey’s public directory
\afs\umbc.edu\users\f\r\frey\pub\313\proj3 to a (protected) directory in which you plan
to do your work. Then give the command:tar xvf datalab-handout.tar . This will cause a
number of files to be unpacked in the directory. The only file you will be modifying and turning in is
bits.c .

The filebtest.c allows you to evaluate the functional correctness of your code. The fileREADMEcontains
additional documentation aboutbtest . Use the commandmake btest to generate the test code and run
it with the command./btest . The filedlc is a compiler binary that you can use to check your solutions
for compliance with the coding rules. The remaining files areused to buildbtest .

Looking at the filebits.c you’ll notice a C structureteam into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

Thebits.c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using onlystraightline code (i.e., no loops or conditionals) and a limited

1



number of C arithmetic and logical operators. Specifically,you areonly allowed to use the following eight
operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than
8 bits. Use ofunsigned is strictly forbidden. You may not declare variables asunsigned or cast a
variable to beunsigned . See the comments inbits.c for detailed rules and a discussion of the desired
coding style.

Evaluation

Your code will be compiled withGCC and run and tested on one of the class machines. Your score will be
computed out of a maximum of 75 points based on the following distribution:

40 Correctness of code running on one of the class machines.

30 Performance of code, based on number of operators used in each function.

5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test arguments inbtest.c . You will get full
credit for a puzzle if it passes all of the tests performed bybtest.c , half credit if it fails one test, and no
credit otherwise.

Regarding performance, our main concern at this point in thecourse is that you can get the right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function.

FunctionbitXor should duplicate the behavior of the bit operationˆ , using only the operations& and˜ .

2



Name Description Rating Max Ops
bitXor(x,y) ˆ using only& and˜ 2 14
isNotEqual(x,y) x != y? 2 6
copyLSB(x) Set all bits to LSB ofx 2 5
bitMask(hi, lo) return mask for bit positions lo to hi 3 16
bitCount(x) Count number of 1’s inx 4 40
bang(x) Compute!x without using! operator 4 12
leastBitPos(x) Mark least significant 1 bit 4 6

Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops
isZero(x) returns 1 if x is zero 1 2
minusOne() returns the value -1 1 2
divpwr2(x,n) x/(1<<n) 2 15
isGreater(x,y) x > y? 3 24
isNegative(x) x < 0? 3 6
isLessOrEqual(x, y) x <= y? 3 24
multFiveEights(x) multiples x by 5/8 and returns the result 3 12
conditional(x, y, z) x ? y : z 3 16

Table 2: Arithmetic Functions

FunctionisNotEqual comparesx to y for inequality. As with allpredicate operations, it should return1
if the tested condition holds and0 otherwise.

FunctioncopyLSB returns a 1-bit bitmask indicating the position of the leastsignficant 1 bit.

FunctionbitMask returns a mask with all 1s for bit positionslbit to hbit and all other bits 0. For
example, bitMask(5, 3) returns 0x38.

FunctionbitCount returns a count of the number of 1’s in the argument.

Functionbang computes logical negation without using the! operator.

Function leastBitPos generates a mask consisting of a single bit marking the position of the least
significant one bit in the argument. If the argument equals 0,it returns 0.

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers.

FunctionisZero returns 1 ifx is zero, 0 otherwise.

FunctionminusOne returns an integer whose value is -1.

Functiondivpwr2 divides its first argument by2n, wheren is the second argument. You may assume that

3



0 ≤ n ≤ 30. It must round toward zero.

FunctionisGreater determines whetherx is greater thany .

FunctionisNegative returns 1 ifx is negative, 0 otherwise.

FunctionisLessOrEqual returns 1 ifx is less than or equal toy , 0 otherwise.

FunctionmultFiveEights multiplesx by 5/8, rounding toward zero and returns the result. For example,
multFiveEights(77) = 48.

Functionconditional simulates the trinary ?: operators. It returnsy if x is “true” andz if x is “false”.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on the UMBC GL Linux machines. If it doesn’t
compile, we can’t grade it.

The dlc program, a modified version of an ANSI C compiler, will be usedto check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc :

• Thedlc program runs silently unless it detects a problem.

• Don’t include<stdio.h> in yourbits.c file, as it confusesdlc and results in some non-intuitive
error messages.

Check the fileREADMEfor documentation on running thebtest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the-f flag to instructbtest
to test only a single function, e.g.,./btest -f isPositive .

Hand In Instructions

• Make sure you have included your identifying information inyour file bits.c .

• Remove any extraneous print statements.

• Create a team name of the form:

– “ID ” whereID is your Andrew ID, if you are working alone, or

– “ID1+ID2” where ID1 is the UMBC email IDof the first team member andID2 is the UMBC
email ID of the second team member.

4



This should be the same as the team name you entered in the structure inbits.c .

• To handin yourbits.c file, type:

make handin TEAM=teamname

whereteamname is the team name described above.

• After the handin, if you discover a mistake and want to submita revised copy, type

make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission.

• You can verify your handin by looking in

/afs/umbc.edu/users/c/m/cmsc313/pub/cmsc313_submiss ions/proj3

You have list and insert permissions in this directory, but no read or write permissions.

5


