CMSC 313 Spring 2010
Exam 3
May 17, 2010

Name Score

UMBC Username

Notes:
a. Please write clearly. Unreadable answers receveredit.

b. There are no intentional syntax errors in any quaeided with this
exam. If you think you see an error that wouleetffyour answer,
please bring it to my attention

c. This exam is worth 85 points

T e TR was

Enjoy the summer at the beach !!

Multiple Choice (2 points each)
Write the letter of th&EST answer on the line provided for each question.

1. In the memory hierarchy, lekas considered a cache for lekall because
. it's smaller and faster

. it's bigger and slower

. it's always in memory

. it's always on the CPU chip

o0 o>

2. PROM stands for

Partial Read Only Memory
Programmable Read Only Memory
. Potential Read Only Memory

. Permanent Read Only Memory

0w

3. (True / False) Using segregated fréethsfind a free block in the heap
approximates the "best fit" algorithm in terms cfmory usage.

4, Dr. Frankenstein has a disk that rotates at 7,200 RBms per full
revolution), has an average seek time of 5ms, asdLB00 sectors per track. How long
(approximately) does the average 1-sector acckeS8 ta

A. Not enough information to determine the answer
.13ms
. 9ms
. 0.5ms

o0Ow

5. A zombie process is created when

. a child process terminates, but its parent @se@ontinues to run
. a parent process terminates, but its childgsscontinues to run
. when a process is sent the SIGZOMBIE signal

. the user types "control-Z" while the processuisning

o0 o>

6. A signal handler is

. a function in the kernel that sends signals

. a function in the kernel that executes whenoggss receives a signal
. a user function that sends signals

. a user function that executes when a processves a signal

o0 o>

7. In project 6, we provided code for anlioitdist allocator. Many students
improved this code by creating a linked list ofeftdocks. Why did this change increase
the performance of the allocator?

A. Traversing a linked list is significantly fastthan moving from block to block
in the implicit list.

B. The implicit list had to include every blockmmemory, but the linked list could
just include the free blocks.

C. Having a linked list made coalescing signifitafaster.

D. None of the above.

8. Imagine a process (called "process A”) that calis k() three times. If all
three child processes terminate before procespkked by the kernel to be run again,
how many times could process A receive SIGCHLD?
A. Not enough information to determine
B.1
C.3
D.1lor3
9. With respect to disk storage, the teotational latency" refers to
. The number of sectors that pass under thewet€e/head on each revolution
. The time required to wait for the desired setigpass under the read/write head

. The time it takes for the disk to make one cleteprevolution
. The time required to wait for the desired tréxlpass under the read/write head

o0 o>

10. The system calkecl () isusedto
A. create a child process
B. load and execute a program
C. execute special code in the kernel
D. switch to "exec mode”

11. RAM is considered to be "volatile memdrgcause
A. its state is occasionally changed without wagni
B. its state is lost when power is removed
C. its state fluctuates, but is always recoverable
D. none of the above

12. Which of the following statements regaydlisk storage iEALSE?
A. The time to access a sector on a disk is ateby the disk's rotational speed.
B. All tracks have the same number of sectors
C. A cylinder is a collection of tracks
D. Transfer time is generally the smallest compoié disk access time

Short Answer

13. (4 points) In no more than 2 sentences, describe the differbetweeimternal
fragmentation andexternal fragmentation.

14.(6 points)What is a "page table"? Describe how a page tahlsed to implement
virtual memory.

15. (6 points)What is a "page fault" and what actions are takizen it occurs?

Heap Memory Allocation

16. (10 points)Consider an allocator with the following specifioa:

apop

P ¢))

Uses a single explicit free list.

All memory blocks have a size that is a multipleddytes and is at least 16 bytes
All headers, footers, and pointers are 4 byteszi@ s

Headers consist of the block size in the upperi9 & bit indicating if the block
is allocated in the lowest bit (bit 0), and a bdicating if the previous block is
allocated in the second lowest bit (bit 1).

Allocated blocks consist of a header and a pay(aadooter)

Free blocks consist of a header, two pointersifemext and previous free blocks
in the free list, and footer at the end of the kloc

All freed blocks are immediately coalesced.

The heap starts with 0 bytes, never shrinks, atggmows large enough to
satisfy memory requests.

The heap contains only allocated blocks and freelsl. There are is no space
used for other data or special blocks to mark #ggriming and end of the heap.
When a block is split, the lower (left) part of thieck becomes the allocated part
and the upper (right) part becomes the new freekblo

Any newly created free block (whether it comes frawall to free, the upper part
of a split block, or the coalescing of several fiodmcks) is inserted at the
beginning of the free list.

All searches for free blocks start at the headheflist and walk through the list in
order.

. If a request can be fulfilled by using a free bloitlat free block is used.

Otherwise the heap is extended only enough tdlIfthe request. If there is a free
block at the end of the heap, this can be usedjalatn the new heap space to
fulfill the request.

Below you are given a series of memory requestsesmight appear in a user's
program. You are asked to show what the heap likdksfter each request is completed
using dfirst fit placement policy. The heap is represented as afdoxes, where each
box is a single block on the heap, and the bottbtheoheap is the left-most box.
Simulate the calls toal | oc() orfree() on the left by marking each block in the
corresponding row. In each block you should witiee total size (including headers and
footers) of the block in bytes and eittf#ror’a’ to mark it as free or allocated,
respectively. For example, the following heap eord an allocated block of size 16,
followed by a free block of size 3=

16¢ 32f

Simulate the memory requests usii®ST FIT for block allocation

ptrl = malloc(32);

ptr2 = malloc(16); 24a

ptr3 = malloc(10);

ptr4 = malloc(40);

free(ptr2);

free(ptrd);

ptr5 = malloc(20);

free(ptrl);

ptré = malloc(20);

free(ptr3);

Dynamic Memory Coding
17. (10 points)Consider a heap memory allocator that usasnaficit freelist. Each
memory block, either allocated or free, has a #iaeis a multiple of eight (8) bytes.
Thus, (assuming a 32-bit integer) only the 29 higirder bits in the header and footer
are needed to record the block size (in bytes)chvinicludes the header and footer. The
usage of the remaining 3 lower order bits is aev:

bit O indicates the use of the current block: aitocated, O for free.

bit 1 indicates the use of the previous adjacttkb 1 for allocated, O for free.

bit 2 is unused and is always set to be O.

Five helper routines are defined to facilitate ithplementation of r ee(voi d *p).
The functionality of each routine is explainediie tomment above the function
definition. Write the letter of the code that correctly completes the funcbarthe line
provided in the function body.

[* given a pointer p to the payload of an allocated block, i.e.,
p is a pointer returned by some previous malloc() call;
returns the pointer to the header of the block

*/

void * header(void* p)

{
void *ptr;
return ptr; ,

}

A.ptr=p-1;
B. ptr = (void *)((int *)p - 1);
C. ptr = (void *)((int *)p - 4);

[* given a pointer to a valid block header or foote r,
returns the size of the block

*/

int size(void *hp)

{
int result;
return result; ’

}

A. result = (*hp) & ("0x7);
B. result = ((*(char *)hp) & ("0x5)) >> 3;
C. result = (*(int *)hp) & ("0x7);

[* given a pointer p to the payload of an allocated
i.e. p is a pointer returned by some previous call
returns the pointer to the footer of the block

*/

void * footer(void *p)

{

void *ptr;

return ptr;

A. ptr = p + size(header(p)) - 8;
B. ptr = p + size(header(p)) - 4;
C. ptr = (int *)p + size(header(p)) - 2;

[* given a pointer to a valid block header or foote
returns the state of the current block,
1 for allocated, O for free

*/
int allocated(void *hp)
L
int result;
return result;
}

A. result = (*(int *)hp) & 0x1;
B. result = (*(int *hp)) & 0x0;
C. result = (*(int *)hp) | 0x1;

[* given a pointer to a valid block header,
returns the pointer to the header of previous b

*/

void * prev(void *hp)

{

void *ptr;

return ptr;

A. ptr = hp - size(hp);
B. ptr = hp - size(hp - 4);
C. ptr = hp - size(hp - 4) + 4,

block,
to malloc()

lock in memory

Process Control
18. (15 points)Consider the following C program. For space reasae do not check
return codes, so assume that all functions retarmally.

int main()

{
pid_t pidl, pid2;
pidl = fork();
pid2 = fork();

if (pidl!=0 & pid2 '= 0)
printf("An");

if (pidl!=0|] pid2 !'=0)
printf("B\n");

exit(0);
}

Mark the top of each column that represents a y@igkible output of this program with
‘Yes’ and the top of each column which is impossiith ‘No’.

YES YES YES NO NO

Signals
19. (10 points)Write the output from the following C code in thex below.

pid_t pid;
int counter = 2;

void handlerl(int sig)

{
counter = counter - 1;
printf("%d", counter);
exit(0);

}

int main()
{
signal(SIGUSR1, handlerl);
printf("%d", counter);
pid = fork();
if (pid == 0)
{

while(1) {}; // simulate doing some work

}

kill(pid, SIGUSR1);
wait(NULL);

counter = counter + 1,
printf("%d", counter);
exit(0);

OUTPUT:

