CMSC 313, Fall 2009
Project 3: Manipulating Bits
Assigned: Wed. Oct. 7
Due: Tues., Oct. 20, 11:59PM

Introduction

The purpose of this assignment is to become more familidr bittlevel representations and manipulations.
You'll do this by solving a series of programming “puzzledany of these puzzles are quite artificial, but
you'll find yourself thinking much more about bits in workiygur way through them.

Logistics

You may work in a group of up to two people in solving the prabéefor this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions tha assignment will be posted on the course Web

page.

Hand Out Instructions

Start by copyingdatalab-handout.tar from Mr. Frey’s public directory
lafs/lumbc.edu/users/f/r/frey/pub/313/proj3 to a (protected) directory in which you plan
to do your work. Then give the commandar xvf datalab-handout.tar . This will cause a

number of files to be unpacked in the directory. The only filel yall be modifying and turning in is
bits.c

The filebtest.c allows you to evaluate the functional correctness of yodecd he filEREADMIEontains
additional documentation abobtest . Use the commanchake btest to generate the test code and run
it with the command/btest . The filedlc is a compiler binary that you can use to check your solutions
for compliance with the coding rules. The remaining files@sed to buildbtest

Looking at the filebits.c ~ you'll notice a C structuréeam into which you should insert the requested
identifying information about the one or two individualsneprising your programming team. Do this right
away so you don't forget.

Thebits.c file also contains a skeleton for each of the 15 programmirezlps. Your assignment is to
complete each function skeleton using odlisaightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specificalty) areonly allowed to use the following eight
operators:

& T | + << >>

A few of the functions further restrict this list. Also, youeanot allowed to use any constants longer than 8
bits. See the commentsinits.c for detailed rules and a discussion of the desired codirlg.sty

Evaluation

Your code will be compiled wittecc and run and tested on one of the linux.gl machines. Your seife
be computed out of a maximum of 75 points based on the foligwliatribution:

40 Correctness of code running on one of the linux.gl machines.
30 Performance of code, based on humber of operators usedhirf@aation.

5 Style points, based on your instructor’'s subjective eu#dnaof the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficultpgdietween 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using trst sgguments itest.c . You will get full
credit for a puzzle if it passes all of the tests performedtsst.c , half credit if it fails one test, and no
credit otherwise.

Regarding performance, our main concern at this point incthese is that you can get the right answer.
However, we want to instill in you a sense of keeping thingstamt and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wanijoee more clever. Thus, for each function
we've established a maximum number of operators that yoallneed to use for each function. This limit
is very generous and is designed only to catch egregiousffidgient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we've reserved 5 points for a subjective evaluatad the style of your solutions and your com-
menting. Your solutions should be as clean and straighdoivas possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate andstdstof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, ama t'‘Max ops” field gives the maximum number
of operators you are allowed to use to implement each functio

Name Description Rating | Max Ops
bitNor(x,y) “(xly) using only& and”™ 1 8
bitXor(x,y) " using only& and” 2 14
isNotEqual(x,y) X 1= y? 2 6
getByte(x,n) Extract byten from x 2 6
copyLSB(x) Set all bits to LSB ok 2 5
logicalShift(x,n) Logical right shiftx by n 3 16
bitCount(x) Count number of 1’s ix 4 40
bang(x) Computelx without using! operator 4 12
leastBitPos(x) Mark least significant 1 bit 4 30
Table 1: Bit-Level Manipulation Functions.
Name Description Rating | Max Ops
tmax(void) largest two's complement integer 1 4
isNonNegative(x) x >= 07? 3 6
isGreater(x,y) X > y? 3 24
divpwr2(x,n) x/(1<<n) 3 15
abs(x) absolute value 4 10
addOK(x,y) Doesx+y overflow? 3 20

Table 2: Arithmetic Functions

FunctionbitNor computes the NR function. That is, when applied to argumentsandy, it returns
“(x]ly) . You may only use the operatoksand™ . FunctionbitXor should duplicate the behavior of the
bit operation™ , using only the operation& and™ .

FunctionisNotEqual comparex toy for inequality. As with allpredicate operations, it should returh
if the tested condition holds arfilotherwise.

FunctiongetByte extracts a byte from a word. The bytes within a word are omiérem O (least signif-
icant) to 3 (most significant). FunctiaropyLSB replicates a copy of the least significant bit in all 32 bits
of the result. FunctiotogicalShift performs logical right shifts. You may assume the shift antou
satisfiesl <n < 31.

FunctionbitCount returns a count of the number of 1's in the argument. Fundigomy computes logical
negation without using the operator. FunctiofeastBitPos generates a mask consisting of a single bit
marking the position of the least significant one bit in thguanent. If the argument equals 0, it returns 0.

Part Il: Two’'s Complement Arithmetic

Table 2 describes a set of functions that make use of the teo'golement representation of integers.

Functiontmax returns the largest integer.

FunctionisNonNegative determines whethex is less than or equal to 0.
FunctionisGreater determines whethe is greater thary.

Functiondivpwr2 divides its first argument by™, wheren is the second argument. You may assume that
0 <n < 30. It must round toward zero.

Functionabs is equivalent to the expressior07?-x:x , giving the absolute value af for all values other
than TMin.

FunctionaddOK determines whether its two arguments can be added togettieuivoverflow.

Advice

You are welcome to do your code development using any systesaropiler you choose. Just make sure
that the version you turn in compiles and runs correctly onaass machines. If it doesn’t compile, we
can’t grade it.

Thedlc program, a modified version of an ANSI C compiler, will be usedcheck your programs for
compliance with the coding style rules. The typical usage is

Jdlc bits.c

Type./dlc -help for a list of command line options. The README file is also HalpSome notes on
dic :

e Thedlc program runs silently unless it detects a problem.

e Don'tinclude<stdio.h> inyourbits.c file, as it confusesdlc and results in some non-intuitive
error messages.

Check the fileREADMEor documentation on running thHeest program. You'll find it helpful to work
through the functions one at a time, testing each one as yoMaocan use thef flag to instructbtest
to test only a single function, e.g/btest -f isPositive

Hand In Instructions

e Make sure you have included your identifying informatiornyour file bits.c
e Remove any extraneous print statements.
¢ Create a team name of the form:

— “ID" where ID is your UMBC email ID if you are working alone, or

— “ID{+1ID5" where ID4 is the UMBC email ID of the first team member anfl, is the UMBC
email ID of the second team member.

This should be the same as the team name you entered in tbheistrinbits.c

To handin youmits.c file, type:
make handin TEAM=teamname

whereteamname is the team name described above.

After the handin, if you discover a mistake and want to sulznmévised copy, type
make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission.

You can verify your handin by looking in
lafs/lumbc.edu/users/f/r/frey/pub/cs313f09/Proj3/

You have list and insert permissions in this directory, butead or write permissions.

