
CMSC 313 Lecture 05

• Project 1 Questions

• Recap i386 Basic Architecture
• Recap “toupper.asm”

• gdb demo

• i386 Instruction Set Overview
• i386 Basic Instructions

• EFLAGS Register & Branching Instructions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 1: Change in Character

Due: Tue 09/16/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/17/03, Section 0201 (Patel & Bourner)

Objective

This project is a finger-warming exercise to make sure that everyone can compile an assembly language
program, run it through the debugger and submit the requisite files using the systems in place for the
programming projects.

Assignment

For this project, you must do the following:

1. Write an assembly language program that prompts the user for an input string and a replacement
character. The program then replaces all occurrences of the digits 0-9 with the replacement
character. A sample run of the program should look like:

Input String: Today’s date is August 23, 2003.
Replacement character: X
Output: Today’s date is August XX, XXXX.

If the user enters several characters instead of a single replacement character, you can ignore the
extra ones and just use the first character entered as the replacement. A good starting point for your
project is the program toupper.asm (shown in class) which converts lower case characters in the
user’s input string to upper case. The source code is available on the GL file system at:
/afs/umbc.edu/users/c/h/chang/pub/cs313/

2. Using the UNIX script command, record some sample runs of your program and a debugging
session using gdb. In this session, you should fully exercise the debugger. You must set several
breakpoints, single step through some instructions, use the automatic display function and examine
the contents of memory before and after processing. The script command is initiated by typing
script at the UNIX prompt. This puts you in a new UNIX shell which records every character
typed or printed to the screen. You exit from this shell by typing exit at the UNIX prompt. A file
named typescript is placed in the current directory. You must exit from the script command
before submitting your project. Also, remember not to record yourself editing your programs — this
makes the typescript file very large.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the modified assembly language program and 2) the typescript file of your debugging session. The class
name for submit is cs313_0101, cs313_0201 or cs313_0301 depending on which section you attend. The
name of the assignment name is proj1. The UNIX command to do this should look something like:

submit cs313_0101 proj1 change.asm typescript

Notes

Additional help on running NASM, gdb and making system calls in Linux are available on the assembly
language programming web page for this course:

<http://www.csee.umbc.edu/~chang/cs313.f03/assembly.shtml>

Recall that the project policy states that programming assignments must be the result of individual
effort. You are not allowed to work together. Also, your projects will be graded on five criteria: correctness,
design, style, documentation and efficiency. So, it is not sufficient to turn in programs that assemble and run.
Assembly language programming can be a messy affair — neatness counts.

Recap i386 Basic Architecture

• Registers are storage units inside the CPU.

• Registers are much faster than memory.
• 8 General purpose registers in i386:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

subparts of EAX, EBX, ECX and EDX have special names

• The instruction pointer (EIP) points to machine code
to be executed.

• Typically, data moves from memory to registers,
processed, moves from registers back to memory.

• Different addressing modes used.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.

3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all
lower case characters to upper case.

• Use gdb to trace the program.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

i386 Instruction Set Overview

• General Purpose Instructions
works with data in the general purpose registers

• Floating Point Instructions
floating point arithmetic

data stored in separate floating point registers

• Single Instruction Multiple Data (SIMD) Extensions
MMX, SSE, SSE2

• System Instructions
Sets up control registers at boot time

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

5-2

INSTRUCTION SET SUMMARY

5.1. GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic, program flow,
and string operations that programmers commonly use to write application and system software
to run on IA-32 processors. They operate on data contained in memory, in the general-purpose
registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP) and in the EFLAGS register. They
also operate on address information contained in memory, the general-purpose registers, and the
segment registers (CS, DS, SS, ES, FS, and GS). This group of instructions includes the
following subgroups: data transfer, binary integer arithmetic, decimal arithmetic, logic opera-
tions, shift and rotate, bit and byte operations, program control, string, flag control, segment
register operations, and miscellaneous.

5.1.1. Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment
registers. They also perform specific operations such as conditional moves, stack access, and
data conversion.

MOV Move data between general-purpose registers; move data between
memory and general-purpose or segment registers; move immediates
to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below
or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater
or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if
not greater

CMOVC Conditional move if carry

5-3

INSTRUCTION SET SUMMARY

CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even

CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd

XCHG Exchange

BSWAP Byte swap

XADD Exchange and add

CMPXCHG Compare and exchange

CMPXCHG8B Compare and exchange 8 bytes

PUSH Push onto stack

POP Pop off of stack

PUSHA/PUSHAD Push general-purpose registers onto stack

POPA/POPAD Pop general-purpose registers from stack

IN Read from a port

OUT Write to a port

CWD/CDQ Convert word to doubleword/Convert doubleword to quadword

CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register

MOVSX Move and sign extend

MOVZX Move and zero extend

5.1.2. Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and
doubleword integers located in memory and/or the general purpose registers.

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply

5-4

INSTRUCTION SET SUMMARY

MUL Unsigned multiply

IDIV Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare

5.1.3. Decimal Arithmetic

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD)
data.

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust before division

5.1.4. Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte,
word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR

NOT Perform bitwise logical NOT

5.1.5. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left

5-5

INSTRUCTION SET SUMMARY

SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

5.1.6. Bit and Byte Instructions

The bit and instructions test and modify individual bits in the bits in word and doubleword oper-
ands. The byte instructions set the value of a byte operand to indicate the status of flags in the
EFLAGS register.

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte
if not carry

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte
if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow

5-6

INSTRUCTION SET SUMMARY

SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare

5.1.7. Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return oper-
ations to control program flow.

JMP Jump

JE/JZ Jump if equal/Jump if zero

JNE/JNZ Jump if not equal/Jump if not zero

JA/JNBE Jump if above/Jump if not below or equal

JAE/JNB Jump if above or equal/Jump if not below

JB/JNAE Jump if below/Jump if not above or equal

JBE/JNA Jump if below or equal/Jump if not above

JG/JNLE Jump if greater/Jump if not less or equal

JGE/JNL Jump if greater or equal/Jump if not less

JL/JNGE Jump if less/Jump if not greater or equal

JLE/JNG Jump if less or equal/Jump if not greater

JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

JS Jump if sign (negative)

JNS Jump if not sign (non-negative)

JPO/JNP Jump if parity odd/Jump if not parity

JPE/JP Jump if parity even/Jump if parity

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero

LOOP Loop with ECX counter

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal

5-7

INSTRUCTION SET SUMMARY

CALL Call procedure

RET Return

IRET Return from interrupt

INT Software interrupt

INTO Interrupt on overflow

BOUND Detect value out of range

ENTER High-level procedure entry

LEAVE High-level procedure exit

5.1.8. String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from
memory.

MOVS/MOVSB Move string/Move byte string

MOVS/MOVSW Move string/Move word string

MOVS/MOVSD Move string/Move doubleword string

CMPS/CMPSB Compare string/Compare byte string

CMPS/CMPSW Compare string/Compare word string

CMPS/CMPSD Compare string/Compare doubleword string

SCAS/SCASB Scan string/Scan byte string

SCAS/SCASW Scan string/Scan word string

SCAS/SCASD Scan string/Scan doubleword string

LODS/LODSB Load string/Load byte string

LODS/LODSW Load string/Load word string

LODS/LODSD Load string/Load doubleword string

STOS/STOSB Store string/Store byte string

STOS/STOSW Store string/Store word string

STOS/STOSD Store string/Store doubleword string

REP Repeat while ECX not zero

REPE/REPZ Repeat while equal/Repeat while zero

REPNE/REPNZ Repeat while not equal/Repeat while not zero

INS/INSB Input string from port/Input byte string from port

5-8

INSTRUCTION SET SUMMARY

INS/INSW Input string from port/Input word string from port

INS/INSD Input string from port/Input doubleword string from port

OUTS/OUTSB Output string to port/Output byte string to port

OUTS/OUTSW Output string to port/Output word string to port

OUTS/OUTSD Output string to port/Output doubleword string to port

5.1.9. Flag Control Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHF/PUSHFD Push EFLAGS onto stack

POPF/POPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

5.1.10. Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the
segment registers.

LDS Load far pointer using DS

LES Load far pointer using ES

LFS Load far pointer using FS

LGS Load far pointer using GS

LSS Load far pointer using SS

5-9

INSTRUCTION SET SUMMARY

5.1.11. Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address,
executing a “no-operation,” and retrieving processor identification information.

LEA Load effective address

NOP No operation

UD2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor Identification

5.2. X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate
on floating-point, integer, and binary-coded decimal (BCD) operands.

5.2.1. Data Transfer

The data transfer instructions move floating-point, integer, and BCD values between memory
and the x87 FPU registers. They also perform conditional move operations on floating-point
operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal

FCMOVNE Floating-point conditional move if not equal

FCMOVB Floating-point conditional move if below

FCMOVBE Floating-point conditional move if below or equal

FCMOVNB Floating-point conditional move if not below

FCMOVNBE Floating-point conditional move if not below or equal

Common Instructions

• Basic Instructions
ADD, SUB, INC, DEC, MOV, NOP

• Branching Instructions
JMP, CMP, Jcc

• More Arithmetic Instructions
NEG, MUL, IMUL, DIV, IDIV

• Logical (bit manipulation) Instructions
AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR

• Subroutine Instructions
PUSH, POP, CALL, RET

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

RISC vs CISC

• CISC = Complex Instruction Set Computer
Pro: instructions closer to constructs in higher-level languages

Con: complex instructions used infrequently

• RISC = Reduced Instruction Set Computer
Pro: simpler instructions allow design efficiencies (e.g., pipelining)

Con: more instructions needed to achieve same task

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Read The Friendly Manual (RTFM)

• Best Source: Intel Instruction Set Reference
Available off the course web page in PDF.

Download it, you’ll need it.

• Next Best Source: Appendix A NASM Doc.
• Questions to ask:

What is the instruction’s basic function? (e.g., adds two numbers)

Which addressing modes are supported? (e.g., register to register)

What side effects does the instruction have? (e.g. OF modified)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Intel Manual’s Addressing Mode Notation
r8: One of the 8-bit registers AL, CL, DL, BL, AH, CH, DH, or BH.

r16: One of the 16-bit registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32: One of the 32-bit registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

imm8: An immediate 8-bit value.

imm16: An immediate 16-bit value.

imm32: An immediate 32-bit value.

r/m8: An 8-bit operand that is either the contents of an 8-bit register (AL, BL,
CL, DL, AH, BH, CH, and DH), or a byte from memory.

r/m16: A 16-bit register (AX, BX, CX, DX, SP, BP, SI, and DI) or memory
operand used for instructions whose operand-size attribute is 16 bits.

r/m32: A 32-bit register (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) or
memory operand used for instructions whose operand-size attribute is 32
bits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

The EFLAGS Register

• A special 32-bit register that contains “results” of
previous instructions

OF = overflow flag, indicates two’s complement overflow.

SF = sign flag, indicates a negative result.

ZF = zero flag, indicates the result was zero.

CF = carry flag, indicates unsigned overflow, also used in shifting

• An operation may set, clear, modify or test a flag.

• Some operations leave a flag undefined.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-13

BASIC EXECUTION ENVIRONMENT

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the
function and placement of existing flags have remained the same from one family of the IA-32
processors to the next. As a result, code that accesses or modifies these flags for one family of
IA-32 processors works as expected when run on later families of processors.

3.4.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a borrow out
of the most-significant bit of the result; cleared otherwise. This flag indi-
cates an overflow condition for unsigned-integer arithmetic. It is also used
in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.

Figure 3-7. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
X Overflow Flag (OF)
X Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Richard Chang
Ov Overfl flow Flag (OF)

Richard Chang
Sign F Flag ag (SF SF)

Richard Chang
Zero Fl Flag (ZF)

Richard Chang
Carry F Flag (CF)

3-14

BASIC EXECUTION ENVIRONMENT

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used in binary-
coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is the
sign bit of a signed integer. (0 indicates a positive value and 1 indicates a
negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or
too small a negative number (excluding the sign-bit) to fit in the destina-
tion operand; cleared otherwise. This flag indicates an overflow condition
for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF
flag.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction
with the add with carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry
or borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2. DF FLAG

The direction flag (DF, located in bit 10 of the EFLAGS register) controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the string instructions to
auto-decrement (that is, to process strings from high addresses to low addresses). Clearing the
DF flag causes the string instructions to auto-increment (process strings from low addresses
to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the
system flags are as follows:

Summary of ADD Instruction

• Basic Function:
Adds source operand to destination operand.

Both signed and unsigned addition performed.

• Addressing Modes:
Source operand can be immediate, a register or memory.

Destination operand can be a register or memory.

Source and destination cannot both be memory.

• Flags Affected:
OF = 1 if two’s complement overflow occurred

SF = 1 if result in two’s complement is negative (MSbit = 1)

ZF = 1 if result is zero

CF = 1 if unsigned overflow occurred

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-739

INSTRUCTION SET REFERENCE

SUB—Subtract

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a borrow in the signed or
unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ DEST – SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

3-326

INSTRUCTION SET REFERENCE

INC—Increment by 1

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ DEST +1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1

3-177

INSTRUCTION SET REFERENCE

DEC—Decrement by 1

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

3-432

INSTRUCTION SET REFERENCE

MOV—Move

NOTES:

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the fol-
lowing “Description” section for further information).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET
instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16** Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

3-433

INSTRUCTION SET REFERENCE

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs1. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size
prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the
standard form of the instruction is used (for example, MOV DS, AX). The processor will
execute this instruction correctly, but it will usually require an extra clock. With most assem-
blers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the
processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16
least-significant bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of the register
is implementation dependent. For the Pentium Pro processor, the two high-order bytes are filled
with zeros; for earlier 32-bit IA-32 processors, the two high order bytes are undefined.

Operation

DEST ‹ SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:
STI
MOV SS, EAX
MOV ESP, EBP
interrupts may be recognized before MOV ESP, EBP executes, because STI also delays interrupts for
one instruction.

3-434

INSTRUCTION SET REFERENCE

MOV—Move (Continued)
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL „ CPL
OR segment is not a writable data segment
OR DPL „ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ‹ segment selector;
SS ‹ segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ‹ segment selector;
SegmentRegister ‹ segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with a null selector;

THEN
SegmentRegister ‹ segment selector;
SegmentRegister ‹ segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

Richard Chang
Flag ags Af Affect cted edNo None.

3-508

INSTRUCTION SET REFERENCE

NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation

Branching Instructions

• JMP = unconditional jump

• Conditional jumps use the flags to decide whether
to jump to the given label or to continue.

• The flags were modified by previous arithmetic
instructions or by a compare (CMP) instruction.

• The instruction
CMP op1, op2

computes the unsigned and two’s complement
subtraction op1 - op2 and modifies the flags. The
contents of op1 are not affected.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Example of CMP instruction

• Suppose AL contains 254. After the instruction:

CMP AL, 17

CF = 0, OF = 0, SF = 1 and ZF = 0.

• A JA (jump above) instruction would jump.

• A JG (jump greater than) instruction wouldn’t jump.

• Both signed and unsigned comparisons use the
same CMP instruction.

• Signed and unsigned jump instructions interpret the
flags differently.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

7-19

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to an instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
a Jcc and a JMP instruction (see “Jcc—Jump if Condition Is Met” in Chapter 3 of the Intel Archi-
tecture Software Developer’s Manual, Volume 2).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter “J” to form the mnemonic
for a Jcc instruction. The instructions are divided into two groups: unsigned and signed condi-
tional jumps.

Table 7-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF)=0 Above/not below or equal

 JAE/JNB CF=0 Above or equal/not below

 JB/JNAE CF=1 Below/not above or equal

 JBE/JNA (CF or ZF)=1 Below or equal/not above

 JC CF=1 Carry

 JE/JZ ZF=1 Equal/zero

 JNC CF=0 Not carry

 JNE/JNZ ZF=0 Not equal/not zero

 JNP/JPO PF=0 Not parity/parity odd

 JP/JPE PF=1 Parity/parity even

 JCXZ CX=0 Register CX is zero

 JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less or equal

 JGE/JNL (SF xor OF)=0 Greater or equal/not less

 JL/JNGE (SF xor OF)=1 Less/not greater or equal

 JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 JNO OF=0 Not overflow

 JNS SF=0 Not sign (non-negative)

 JO OF=1 Overflow

 JS SF=1 Sign (negative)

Next Time

• Near jumps versus short jumps

• Logical (bit manipulation) instructions

• More arithmetic instructions

• Project 2

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

