
CMSC 313 Computer Organization & Assembly Language Programming Fall 2003
Homework 2

Due: Tue 09/16/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/17/03, Section 0201 (Patel & Bourner)

Instructions: For the following questions, show all of your work. It is not sufficient to
provide the answers.

Exercise 1. Convert the following decimal numbers to hexadecimal representations of
16-bit two’s complement numbers.

a. 798

b. 30142

c. -23456

d. -1024

Exercise 2. Convert the following 16-bit two’s complement numbers in hexadecimal rep-
resentation to decimal.

a. FFF016

b. 07FF16

c. 00A816

d. 800016

Exercise 3. Write the following decimal numbers in IEEE-754 single precision format.
Give your answers in binary.

a. 2.54

b. 2.71828

c. −74.6875

d. 64000

Exercise 4. Write the decimal equivalents for these IEEE-754 single precision floating
point numbers given in binary.

a. 0 10000011 01100000000000000000000

b. 1 10000011 00010000000000000000000

c. 1 10000000 00000000000000000000000

d. 0 00000001 11010000000000000000000

CMSC 313 Lecture 04

• Moore’s “Law”

• Evolution of the Pentium Chip
• IA-32 Basic Execution Environment

• IA-32 General Purpose Registers

• “Hello World” in Linux Assembly Language
• Addressing Modes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Moore’s “Law”

• In the mid-1960’s, Intel Chairman of the Board
Gordon Moore observed that “the number of
transistors that would be incorporated on a silicon
die would double every 18 months for the next
several years.”

• His prediction has continued to hold true.
• Perhaps a self-fulfilling prophecy?

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

“Hello World” in Linux Assembly

• Use your favorite UNIX editor (vi, emacs, pico, ...)

• Assemble using NASM on gl.umbc.edu
nasm -f elf hello.asm

• NASM documentation is on-line.

• Need to “load” the object file
ld hello.o

• Execute
a.out

• CMSC 121 Introduction to UNIX
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

80x86 Addressing Modes
• We want to store the value 1734h.
• The value 1734h may be located in a register

or in memory.
• The location in memory might be specified

by the code, by a register, …
• Assembly language syntax for MOV

MOV DEST, SOURCE

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register

MOV EAX, ECX

Data

Code

.

.

.

MOV…

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register Indirect

MOV EAX, [ECX]

Data

Code

.

.

.

MOV…

08A94068

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Memory

MOV EAX, [08A94068]

MOV EAX, [x]

Data

Code

.

.

.

08A94068
MOV…

1734

Addressing Modes

x

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Immediate

MOV EAX, 1734

Data

Code

.

.

.

1734
MOV…

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [EAX], DWORD 1734

Data

Code

.

.

.

1734
MOV…08A94068

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

Data

Code

.

.

.

1734

MOV…
08A94068

Addressing Modes

x

Notes on Addressing Modes
• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

• Figures not drawn to scale. Constants 1734h
and 08A94068h take 4 bytes (little endian).

• Some addressing modes are not supported
by some operations.

• Labels represent addresses not contents of
memory.

toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all
lower case characters to upper case.

• How to:
work with 8-bit data

specify ASCII constant

compare values

loop control

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Debugging Assembly Language Programs

• Cannot just put print statements everywhere.

• Use gdb to:
examine contents of registers

exmaine contents of memory

set breakpoints

single-step through program

• READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

gdb ommand Summary

Command Example Description

run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break *_start+5 sets a breakpoint

delete [n] delete 4 removes nth breakpoint

delete removes all breakpoints

info break lists all breakpoints

stepi execute next instruction

stepi [n] stepi 4 execute next n instructions

nexti execute next instruction, stepping over function calls

nexti [n] nexti 4 execute next n instructions, stepping over function calls

where show where execution halted

disas [addr] disas _start disassemble instructions at given address

info registers dump contents of all registers

print/d [expr] print/d $ecx print expression in decimal

print/x [expr] print/x $ecx print expression in hex

print/t [expr] print/t $ecx print expression in binary

x/NFU [addr] x/12xw &msg Examine contents of memory in given format

display [expr] display $eax automatically print the expression each time the program is halted

 display/i $eip print machine instruction each time the program is halted

info display show list of automatically displays

undisplay [n] undisplay 1 remove an automatic display

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 1: Change in Character

Due: Tue 09/16/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/17/03, Section 0201 (Patel & Bourner)

Objective

This project is a finger-warming exercise to make sure that everyone can compile an assembly language
program, run it through the debugger and submit the requisite files using the systems in place for the
programming projects.

Assignment

For this project, you must do the following:

1. Write an assembly language program that prompts the user for an input string and a replacement
character. The program then replaces all occurrences of the digits 0-9 with the replacement
character. A sample run of the program should look like:

Input String: Today’s date is August 23, 2003.
Replacement character: X
Output: Today’s date is August XX, XXXX.

If the user enters several characters instead of a single replacement character, you can ignore the
extra ones and just use the first character entered as the replacement. A good starting point for your
project is the program toupper.asm (shown in class) which converts lower case characters in the
user’s input string to upper case. The source code is available on the GL file system at:
/afs/umbc.edu/users/c/h/chang/pub/cs313/

2. Using the UNIX script command, record some sample runs of your program and a debugging
session using gdb. In this session, you should fully exercise the debugger. You must set several
breakpoints, single step through some instructions, use the automatic display function and examine
the contents of memory before and after processing. The script command is initiated by typing
script at the UNIX prompt. This puts you in a new UNIX shell which records every character
typed or printed to the screen. You exit from this shell by typing exit at the UNIX prompt. A file
named typescript is placed in the current directory. You must exit from the script command
before submitting your project. Also, remember not to record yourself editing your programs — this
makes the typescript file very large.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the modified assembly language program and 2) the typescript file of your debugging session. The class
name for submit is cs313_0101, cs313_0201 or cs313_0301 depending on which section you attend. The
name of the assignment name is proj1. The UNIX command to do this should look something like:

submit cs313_0101 proj1 change.asm typescript

Notes

Additional help on running NASM, gdb and making system calls in Linux are available on the assembly
language programming web page for this course:

<http://www.csee.umbc.edu/~chang/cs313.f03/assembly.shtml>

Recall that the project policy states that programming assignments must be the result of individual
effort. You are not allowed to work together. Also, your projects will be graded on five criteria: correctness,
design, style, documentation and efficiency. So, it is not sufficient to turn in programs that assemble and run.
Assembly language programming can be a messy affair — neatness counts.

Next Time

• Overview of i386 instruction set.

• Arithmetic instructions, logical instructions.

• EFLAGS register

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

