Recursion Terminology

Types of Recursion

· direct

· indirect

· mutual

· tail

· linear

· tree

· stack (LIFO)

· push, pop

· memory map

· runtime stack

· activation record

· stack overflow (stack/heap collision)

Approach to Writing Recursive Functions

1. Write the function header so that you are sure what the function will do and how it will be called.

2. Decompose the problem into subproblems.

3. Write recursive calls to solve those subproblems whose form is similar to that of the original problem.

4. Write code to combine, augment, or modify the results of the recursive call(s) if necessary to construct the desired return

      value or create the desired side effects.

5. Write base case(s) to handle any situations that are not handled properly by the recursive portion of the program. 

Does It Work?

Using “factorial” as an example,

1. A recursive subprogram must have at least one base case and one recursive case (it's OK to have more than one base case, and more than one recursive case). 

[ The first condition is met, because if (n==1) return 1 is a base case, while the "else" part includes a recursive call (factorial(n-1)). ]

2. The test for the base case must execute before the recursive call.

[ If we reach the recursive call, we must have already evaluated if (n==1); this if is the base case test, so this criterion is met. ]

3. The problem must be broken down in such a way that the recursive call is closer to the base case than the top--level call.

[ The recursive call is factorial(n-1). The argument to the recursive call is one less than the argument to the top--level call to factorial. Our base case occurs when n=1. The recursive call is therefore closer to the base case as long as n is positive. If n is not positive, the recursive call does not move toward the base case, so the function will not work properly (precondition!). ]

4. The recursive call must not skip over the base case.

[ Because n is an integer, and the recursive call reduces n by just one, it is not possible to skip over the base case. ]

5. The non-recursive portions of the subprogram must operate correctly. 

[ Assuming that the recursive call works properly, we must now verify that the rest of the code works properly. We can do this by comparing the code with our definition of factorial. This definition says that if n=1 then n! is one. Our function correctly returns 1 when n is 1. If n is not one, the definition says that we should return (n-1)! * n. The recursive call (which we now assume to work properly) returns the value of n-1 factorial, which is then multiplied by n.  Thus, the non--recursive portions of the function behave as required. ]

Recursion vs. Iteration

Recursion

· Usually less code – algorithm can be easier to follow (Towers of Hanoi, binary tree traversals, flood fill)

· Some mathematical and other algorithms are naturally recursive (factorial, summation, series expansions)

Iteration

· Use when the algorithms are easier to write, understand, and modify (especially for beginning programmers)

· Generally, runs faster because there is no stack I/O

· Sometimes are forced to use iteration because stack cannot handle enough activation records (power(2, 5000)

Iterative Factorial

int factorial(int n)

// Precondition:  n > 0

{

   int i;

   int result;

   result = 1;

   for (i = 1; i <= n; i++) {

      result = result * i;

   }

   return result;

}

Recursive Factorial

int factorial(int n) 

// Precondition: n>0

{

   if (n == 1)

      return 1;

    return (n * factorial(n - 1) );

}

Tail Recursive Factorial

int fact_aux(int n, int result)

{

   if (n == 1)

      return result;

   return (fact_aux(n - 1, n * result) );

}

int factorial(n)

{

    return (fact_aux(n, 1) );

}

Tail Recursion to Iteration

int fact_aux(int n, int result)

{

   if (n == 1)

      return result;

   return (fact_aux(n - 1, n * result) );

}

int fact_iter(int n, int result)

{

   int temp_n, temp_result;

   while (n != 1) {

      temp_n = n;

      temp_result = result;

      n = temp_n - 1;

      result = temp_n * temp_result;

   } 

   return result;

}

Linear Recursive Count_42s

int count_42s(int array[], int n)

{

   if (n == 0)

      return 0;

   if (array[n-1] != 42) {

      return (count_42s(array, n-1) );

   }

   return (1 + count_42s(array, n-1) );

}

Tree Recursive Count_42s

int count_42s(int array[], int low, int high)

{

   if ((low > high) ||

       (low == high && array[low] != 42)) {

      return 0 ;

   }

   if (low == high && array[low] == 42) {

      return 1;

   }

   return (count_42s(array, low, (low + high)/2) + 

         count_42s(array, 1 + (low + high)/2, high)) );

}

Fibonacci Numbers

The Fibonacci numbers can be defined by the rule: 

fib(n) = 0  if n is 0,

          = 1  if n is 1,

          = fib(n-1) + fib(n-2) otherwise

For example, the first seven Fibonacci numbers are 

   Fib(0) = 0   

   Fib(1) = 1   

   Fib(2) = Fib(1) + Fib(0) = 1

   Fib(3) = Fib(2) + Fib(1) = 2

   Fib(4) = Fib(3) + Fib(2) = 3

   Fib(5) = Fib(4) + Fib(3) = 5

   Fib(6) = Fib(5) + Fib(4) = 8

Tree Recursive Fibonacci

int fib(int n)

// Precondition:  n >= 0

{ 

   if (n == 0)

      return 0;

   if (n == 1)

      return 1;

   return  (fib(n - 1) + fib(n - 2) );

}

Tail Recursive Fibonacci

int fib_aux(int n, int next, int result)

// Precondition:  n >= 0

{

   if (n == 0)

      return result;

   return (fib_aux(n - 1, next + result, next) );

}

int fib(int n)

{

   return fib(n, 1, 0);

}

Tail Recursion to Iteration

int fib_iter(int n, int next, int result)

{

   int temp_n, temp_next, temp_result;

   while (n != 0) {

      temp_n = n;

      temp_next = next;

      temp_result = result;

      n = temp_n - 1;

      next = temp_next + temp_result;

      result = temp_next;

   }

   return result;

}

