SWING - Chapter 17 + Head First Java + Swing, A Beginner's Guide
These lectures are intended to cover the basics of GUI design and implementation using JAVA Swing. The central CS concepts are

a. Event driven programming (event objects, event handlers, registering a listener)

b. Java components as objects - AWT/SWING hierarchy

c. building GUIs with Swing

The material is designed to be covered in two lectures as outlined below.

Sample code is included in the PPT slides, but I think this will work best if you can use Eclipse to build the GUI app as we go.

Swing I
1. Components and Containers

a. A Swing GUI consists of two key types of items: Components and Containers

although the distinction is often blurred because every Container is a Component

b. Component -- a visual control (eg button)

c. Container - hold and arranges groups of components

All Swing GUIs have at least one container -- the most common is the JFrame which is a "top level" container
The first simple GUI uses a JButton to change the text in a label and is used to show basic GUI components and event handling

2. JFrame (hereafter JF) - the main window - Frame1.java

a. create a window with title using constructor

b. basic JF methods (setSize, setLocation)

3. JButton (hereafter JB)- a GUI component - ButtonExample1.java

a. construct JB whose purpose is to change the its own text

b. add the JB to the JF

c. when the JB is pushed, nothing happens

4. Events, event driven programming, event handlers

a. How do we get the application to do something when the JB is pushed?

1. we need a method to to do the "something" when the JB is pushed -- e

easy - write a method like

public void changeText() {

button.setText("New text");

}

2. we need to know when the JB is pushed -- harder (see below)

a. first we need to tell the JB we want to be told when it's pushed

b. 2nd the JB needs a way to call our method when it's pushed

b. Event-driven programming is a programming technique that uses signals and responses. Java uses events and event handlers to communicate between the components which generate events and the applications that act upon those events. When something happens (JB pushed, mouse moved/clicked, text entered, menu selection chosen, etc), the GUI component (the event source) sends an event object to another object known as the listener. (Multiple listeners are possible, but that's outside our scope)

In CMSC 341 I tried using a "real-life" example – wanting to be notified when something happens. In order to be notified you have to register to be told.

c. in Java, listener interfaces are the bridge between the GUI component event sources and the listener objects. There is a matching interface for every type of event.

d. Getting back to our JB...To be a listener for the JB being pushed we need to do three things.

1. define our class as implementimg the ActionListener interface which consists of the single method actionPerformed(ActionEvent event).

3. write the code for actionPerformed

3. tell the JB that we want to be notified when the JB is pushed by calling the JB's addActionListener() method. (registering with the JB)

Now when the JB is pushed, our actionPerformed method will be called.

e. Note that we never explicitly call the actionPerformed method from within our code. This is the nature of event driven programming.

f. Also note the similarities with exceptions and catch blocks.

5. ButtonExample2.java

JB that changes its own text when pushed

6. Other GUI components with example code?? --- list of these in PPT?

a. JTextField (herafter JTF) - a single line of text input - ActionListener

b. JTextArea(herafter JTA) - multi-line text input - ActionListener

c. JList - a list for item selection - ListSelectionListener

d. JLabel (hereafter JL)
7. JFrame BorderLayout -- necessary to do this now since each area of the JFrame can hold on one component and all will be placed in the CENTER by default and hence "overwrite" each other. (not discussed yet, but note that a JPanel is a component that can hold multiple components, so we populate the JP with lots of components, then place the JP in one of the JF border postions) – ButtonExample3.java

a.. JFrame BorderLayout -- N, E, W, S, CENTER (default location for add())

b. diagram

c. recode example above to locate JB in the WEST

d. add a JL to the NORTH

e. change JB's functionality to change the JL text

8. Add a 2nd JB (in the EAST) that changes the JL text to something different

How do you get action events from 2 buttons that do something different

a. attempt to write two actionPerformed method - you can't and even if you could, how would the buttons know which of the two methods to call?

b. register the same listener with both buttons (sample code for this) -- this works, but not very OO since there's a single event handler doing (potentially) many different things

c. Create 2 separate ActionListener classes - better OO, but these classes won't have access to the variables they need which are inside of our class

d. Inner classes are the answer -- they have the OO appeal of c. above, but inner classed DO have access to the outer classes variables. – ButtonExample4.java

e. (not discussed -- write create an anonymous ActionListener object for each button)

9. Layout Managers - a LayoutManager (hereafter LM) is used to arrange components within a frame (and later a JPanel) -- The add() method tells is used to add a components a JF, but doesn't tell where the component should be displayed. This is the responsibility of the LM. Flow and Grid Layouts are one way to put more than 5 components into a Frame.

a. BorderLayout - default for the JF (N, S, E, W, CENTER), covered earlier

recode the example above stipulating where the 2 JBs and the JL should be placed

b. Flow Layout - arranges components left to right, top to bottom

recode the example with FlowLayout – ButtonExampl5.java is the same as ButtonExample3.java, but uses FlowLayout for the Frame. The PPT just shows the setLayout() call for the JF and the changes to the add() calls

c. Grid Laout - specify number of rows/columns in the grid. Components are placed left/right, top/bottom in the grid cells – ButtonExample6.java is the same as ButtonEampl3.java, but uses GridLayout (3 rows. 1 column) for the Frame. The PPT just shows the setLayout() call for the JF and the changes to the add() calls
10. JPanels (hereafter JPs) - a simple, but useful container class.

JPs can be nested because they are containers

LMs can be applied to JPs to create complex GUI structures

a. Tricolor example code from text seems reasonable – PanelDemo.java
11. Containers hierarchy from the text
12. Icon Basics - Icons are objects which adhere to the Icon interface. Under the covers, each Icon uses an Image object to hold the picture data.

JBs, JLs and other components can be decorated with icons (small pictures) which can be created from .jpg and .gif and .png files – IconExample.java

ImageIcon icon = new ImageIcon("xxx.jpg");

JLabel label1 = new JLabel(icon);

JLabel label2 = new JLabel("Image and Text", icon, JLabel.CENTER);

//Set the position of the text, relative to the icon:

Label2.setVerticalTextPosition(JLabel.BOTTOM);

Label2.setHorizontalTextPosition(JLabel.CENTER);
13. Simple Swing Graphics (Painting)

a. Swing allows applications to draw directly onto the surface of any component. This drawing process is known as "painting" and is somewhat complex.

b. each component inherits a method named paint() from Component. This method is called whenever a component needs to be displayed on the screen. paint calls the methods paintComponent, paintBorder, paintChildren in that order. To paint the surface of a component, you will create a subclass of the component and override its paintComponent method.

c. sample code showing paintComponenet overridden. Note that the first thing it must do is call super.paintComponent(); -- PaintDemo1.java – loads an image an places a shape over top of a portion of the image

d. Each component has a Graphics context. The Graphics context is passed to the paintComponent method. It defines many methods for painting such as

drawLine, drawRect, drawString, drawImage, drawOval, drawPolygon

e. How to request Painting - a component is painted only when its paint() method is called. This is normally done when every a component is resized or redisplayed. You can request that your component be redrawn by calling it's repaint() method. This will cause the component's paint method to be called as soon as it's possible to do so. Note that painting is a relatively slow process and therefore is a low priority task.

f. example animation code from Head-First Java – SimpleAnimation.java
