
Project 2 – CMSC 201 – Spring 2013

Objective: This project will give you a chance to learn about strings, lists, functions, top-down design,

and the stack ADT.

Note: This project will take a long time to complete. Please get started early.

Description: You are going to write a program that will ask the user to enter a fully parenthesized

expression that has non-negative integer operands and using only + - * / and (). Your program will

validate the input, use a stack to solve the fully parenthesized infix expression, convert the infix

expression into postfix, and solve the postfix expression using a stack.

FAQ

Q: What does it mean fully parenthesized expression?

A: This is an expression of the form (operand1 operator operand2). Where an operand is a number or

an operand is itself a fully parenthesized expression. An operator is either + or – or * or /.

Q: What does it mean an infix expression? What is postfix?

A: Infix is how we usually write an expression. It is of the form operand1 operator operand2. Postfix is

of the form operand1 operand2 operator. In postfix, there is no need for() and the operands are

numbers.

Example

Fully parenthesized infix expression: (((56 - 73) + (98 * 4))-(32 - 17))

The same expression in postfix format: 56 73 - 98 4 * + 32 17 - -

Q: How can I use a stack to solve a fully parenthesized infix expression?

A: Just scan the expression from left to right. If it is anything other than a) , push it onto the stack.

When you encounter a) , pop from the stack 4 times, do the math and push the value onto the stack.

At the end you will have just one value in the stack and that will be the answer.

Q: How can I convert a fully parenthesized infix expression into postfix?

A: Just scan the expression from left to right. If it is a (, ignore it. If it is an operator, push it onto the

stack. If it is a number, just add it to the output. If it is a), pop once from the stack and add the

operator that just came out of the stack to the output.

Q: How can I solve the postfix expression using a stack.

A: Just scan the expression from left to right. If it is a number, push it in the stack. If it is an operator,

pop twice (to get two numbers), do the math, and push the answer onto the stack. At the end you will

have just one value in the stack and that will be the answer.

Rules:

1. You should validate your input in this order:

 1. Check for words (e.g. hello) or expressions that are not mathematical, or expressions that

use operators that are not allowed. Report the error message “Sorry. This program cannot work with

this input."

 2. Assuming the input passed check #1, now check for an expression where the user puts in +

to mean a positive number. Report the error message “Please don’t use + for positive numbers"

 3. Assuming the input passed check #2, now check for an expression where the user puts in -

to mean a negative number. Report the error message “Please avoid using negative numbers"

 4. Assuming the input passed check #3, now check for an expression where the user does not

have a fully parenthesized expression. Report the error message “Please write a fully parenthesized

expression"

Note: The spacing should not matter. Therefore (3+4) is just as valid as (3 + 4) which is just as valid

as (3 +4).

Hint: Read about the eval function, it can help with your validation.

2. As always, you should have a main function, but it should not contain more than 20 lines of code

(comments don’t count). Most of the code in main should just be calls to other functions. This means

that your program should use top down design and contains several functions each performing a specific

tasks. Your code must have the following functions:

1. printGreeting – It should print the greeting and be called in main

2. getInput - It should be called in main and take in no arguments. It should ask the user for the

input and validate the input to make sure it is a fully parenthesized expression that has non-negative

integer operands and using only + - * / and (). It can call other functions to help it validate the input.

You can decide what these other functions should be. getInput should return the validated input

back to main .

3. evaluateInfix - It should be called from main . It should take in the fully parenthesized

expression and evaluate it using a stack.

4. infixToPostfix - It should be called from main . It should take in the fully parenthesized

expression and return it as a postfix expression.

5. evaluatePostfix - It should be called from main . It should take in the postfix expression and

evaluate it using a stack.

The 5 functions above are what you must have in your program. You may have other functions and you

may call these other functions from main or any other function. You can decide when it would be

better to have your expression stored as a string vs. as a list. For example, it may be helpful to have

your expression stored in a list and pass a list into the evaluateInfix , infixToPostfix , and

evaluatePostfix functions.

3. You must use the Stack.py given below and not add any code to it. However, you should add

comments to let us know you understand the code. Therefore, you will submit two files: Stack.py

(given below) and Proj2.py (it will have your code in it). The only import statement allowed in Proj2.py

is from Stack import *

class Stack:

 def __init__(self):

 self.theStack =[]

 def top(self):

 if self.isEmpty():

 return "Empty Stack"

 else:

 return self.theStack[-1]

 def isEmpty(self):

 return len(self.theStack) == 0

 def push(self, item):

 self.theStack.append(item)

 def pop(self):

 if not self.isEmpty():

 temp = self.theStack[- 1]

 del(self.theStack[- 1])

 return temp

 else:

 return "Empty Stack"

--

Sample run (user input is shown in bold and explanation in text box is not part of the program’s output)

Enter a fully parenthesized expression that has

non-negative integer operands and using only + - * / and ()

Please enter the expression: hello

Sorry. This program cannot work with this input.

Please enter the expression: [1,2,3]

Sorry. This program cannot work with this input.

Please enter the expression: (3 + 4

Sorry. This program cannot work with this input.

Greeting

hello is not

valid.

Can not

work with

lists

Not a valid mathematical expression

since it is missing closing). In general, 3

+ 4 would be ok, but not for our

program since it is not fully

parenthesized

Please enter the expression: 5 ** 2

Sorry. This program cannot work with this input.

Please enter the expression: 10 % 3

Sorry. This program cannot work with this input.

Please enter the expression: 3 - +4

Please don’t use + for positive numbers

Please enter the expression: +5 * 9

Please don’t use + for positive numbers

Please enter the expression: -9 + 4

Please avoid using negative numbers

Please enter the expression: 17 - - 2

Please avoid using negative numbers

Please enter the expression: (12 * -2 +4)

Please avoid using negative numbers

Please enter the expression: (12 * 2 + 4)

Please write a fully parenthesized expression

Please enter the expression: (12)

Please write a fully parenthesized expression

** and %

are okay in

Python, but

not in our

program. In

general,

notice that

spacing

should not

matter

Passes check 1 , but fails

check 2, no + for positive

numbers

Passes check 2, but fails check

3, no negative numbers

Pass check 3, but fail check 4,

they are not fully

parenthesized expressions as

defined above.

Please enter the expression: (12 *2) + 4

Please write a fully parenthesized expression

Please enter the expression: (((56 - 73) + (98 * 4))-(32 - 17))

-------Using A Stack To Evaluate Infix------------- ------

Pushing (into the stack

Pushing (into the stack

Pushing (into the stack

Pushing 56 into the stack

Pushing - into the stack

Pushing 73 into the stack

 Popping operand 2: 73 from the stack

 Popping operator: - from the stack

 Popping operand 1: 56 from the stack

 Popping (from the stack

Pushing -17 into the stack

Pushing + into the stack

Pushing (into the stack

Pushing 98 into the stack

Pushing * into the stack

Pushing 4 into the stack

 Popping operand 2: 4 from the stack

 Popping operator: * from the stack

 Popping operand 1: 98 from the stack

 Popping (from the stack

Pushing 392 into the stack

 Popping operand 2: 392 from the stack

Pass check 3, but fail check 4,

not a fully parenthesized

expression as defined above.

Finally, something that passes

all the checks!

Steps required to use a stack

to evaluate this fully

parenthesized expression

 Popping operator: + from the stack

 Popping operand 1: -17 from the stack

 Popping (from the stack

Pushing 375 into the stack

Pushing - into the stack

Pushing (into the stack

Pushing 32 into the stack

Pushing - into the stack

Pushing 17 into the stack

 Popping operand 2: 17 from the stack

 Popping operator: - from the stack

 Popping operand 1: 32 from the stack

 Popping (from the stack

Pushing 15 into the stack

 Popping operand 2: 15 from the stack

 Popping operator: - from the stack

 Popping operand 1: 375 from the stack

 Popping (from the stack

Pushing 360 into the stack

The final answer is 360

-------Infix to Postfix--------------------

56 73 - 98 4 * + 32 17 - -

-------Using A Stack to Evaluate Postfix----------- --------

Pushing 56 into the stack

Steps required to use a stack

to evaluate this fully

parenthesized expression

Use a stack to convert to

postfix (you can display the

results of the stack operation

when you debug your code,

but don’t include in the final

output)

Pushing 73 into the stack

 Popping operand 2: 73 from the stack

 Popping operand 1: 56 from the stack

Pushing -17 into the stack

Pushing 98 into the stack

Pushing 4 into the stack

 Popping operand 2: 4 from the stack

 Popping operand 1: 98 from the stack

Pushing 392 into the stack

 Popping operand 2: 392 from the stack

 Popping operand 1: -17 from the stack

Pushing 375 into the stack

Pushing 32 into the stack

Pushing 17 into the stack

 Popping operand 2: 17 from the stack

 Popping operand 1: 32 from the stack

Pushing 15 into the stack

 Popping operand 2: 15 from the stack

 Popping operand 1: 375 from the stack

Pushing 360 into the stack

The final answer is 360

Steps required to use a stack

to evaluate the postfix

expression

Here is another Example run of the program

Enter a fully parenthesized expression that has

non-negative integer operands and using only + - * / and ()

Please enter the expression: ((17 / 2) + (25 -18))

-------Using A Stack To Evaluate Infix------------- ------

Pushing (into the stack

Pushing (into the stack

Pushing 17 into the stack

Pushing / into the stack

Pushing 2 into the stack

 Popping operand 2: 2 from the stack

 Popping operator: / from the stack

 Popping operand 1: 17 from the stack

 Popping (from the stack

Pushing 8 into the stack

Pushing + into the stack

Pushing (into the stack

Pushing 25 into the stack

Pushing - into the stack

Pushing 18 into the stack

 Popping operand 2: 18 from the stack

 Popping operator: - from the stack

 Popping operand 1: 25 from the stack

 Popping (from the stack

Pushing 7 into the stack

Note 17/2 is 8 because of int

division

 Popping operand 2: 7 from the stack

 Popping operator: + from the stack

 Popping operand 1: 8 from the stack

 Popping (from the stack

Pushing 15 into the stack

The final answer is 15

-------Infix to Postfix--------------------

17 2 / 25 18 - +

-------Using A Stack to Evaluate Postfix----------- --------

Pushing 17 into the stack

Pushing 2 into the stack

 Popping operand 2: 2 from the stack

 Popping operand 1: 17 from the stack

Pushing 8 into the stack

Pushing 25 into the stack

Pushing 18 into the stack

 Popping operand 2: 18 from the stack

 Popping operand 1: 25 from the stack

Pushing 7 into the stack

 Popping operand 2: 7 from the stack

 Popping operand 1: 8 from the stack

Pushing 15 into the stack

The final answer is 15

When you've finished your project, use the submit command to submit the files. You must be logged

into your account and you must be in the same directory as the file you're trying to submit.

At the Linux prompt, type

 submit cs201 Proj2 proj2.py

 submit cs201 Proj2 Stack.py

After entering the submit command shown above, you should get a confirmation that submit worked

correctly:

 Submitting proj2.py...OK

 Submitting Stack.py...OK

If not, check your spelling and that you have included each of the required parts and try again.

You can check your submission by entering:

 submitls cs201 Proj2

You should see the name of the files that you just submitted, in this case proj2.py and Stack.py

