
View-Concepts: Knowledge-Based Access to Databases �

Jon A. Pastor Donald P. McKay Timothy W. Finin

Paramax Systems Corp. Paramax Systems Corp. Computer Science Department
(A Unisys Company) (A Unisys Company) University of Maryland,

Valley Forge Laboratories Valley Forge Laboratories Baltimore County
Research and Development Research and Development 5401 Wilkens Avenue

PO Box 517 PO Box 517 Baltimore, MD 21228
Paoli, PA 19301 Paoli, PA 19301

pastor@prc.unisys.com mckay@prc.unisys.com �nin@cs.umbc.edu

Abstract

Semantic data models for database systems provide
powerful tools to assist database administrators in de-
signing and maintaining schemas, but provide little
or no direct support for users of the database. Some
research has been done on mapping user models of
a domain to the underlying database using semantic
schemas. Little has been done, however, on mapping
conceptually meaningful data structures to a database
lacking a semantic schema, or to a multi-database sys-
tem that lacks a consistent semantic schema. We argue
for the appropriateness of a knowledge representation
language as a language for describing the database
schema, user data structures, and the mapping be-
tween them; present a problem domain in which an ex-
isting relational database without a semantic schema
must be accessed by a knowledge-based application;
and describe our implementation of a system that pro-
vides access to a relational database from a KL-ONE-
style knowledge representation language.

1 Introduction

The integration of AI and DBMS technologies
promises to play a signi�cant role in shaping the fu-
ture of computing. As noted in [7], AI/DB integration
is crucial not only for next-generation computing, but
also for the continued development of DBMS technol-

�This work is supported by Rome Laboratory and the De-

fense AdvancedResearchProjects Agency underUSAF contract

F30602-91-C-0040. The views and conclusions are the authors'

and should not be interpreted as the o�cial opinion or conclu-

sions of the U.S. Government, the USAF, Rome Laboratory or

DARPA.

ogy and, in many cases, for the e�ective application of
AI technology. The motivations driving the integra-
tion of these two technologies include the need for

� access to large amounts of shared data for knowl-
edge processing,

� e�cient management of knowledge as well as
data, and

� intelligent processing of data.

In addition, AI/DB integration at Paramax was
motivated by the desire to preserve the substantial in-
vestment in most existing, or legacy, databases. To
that end, a key design criterion was that our integra-
tion technology support the use of existing DBMSs as
independent system components.

We distinguish four approaches to the integration
of AI and DBMS technologies:

� extended AI system

� extended DBMS system

� loosely coupled AI/DB interface

� enhanced AI/DB interface

Our previous work on the Intelligent Database Inter-
face (IDI) [11] focused on an enhanced AI/DB inter-
face for logic-based systems; the work described in this
paper builds on the IDI by de�ning a view-concept
model demonstrated using the Loom Interface Module
(LIM).

The IDI is a cache-based interface to DBMSs, and
is designed to be easily integrated into various types
of AI systems. The design of the IDI also allows it
to be used as an interface between DBMSs and other
types of applications, such as database browsers and

general query processors. LIM is an extension of the
IDI for structured knowledge representation systems.
Since the IDI is modular in design, applying LIM to a
di�erent DBMS, or to a di�erent data model, requires
only implementation of the appropriate back-end for
the other DB system.

While use of relational DBMSs is burgeoning, the
appropriateness of the relational model as a user data
model has been questioned. For example, proponents
of the view-objectmodel [15] have argued that while
e�cient retrieval, sharability, and other considerations
make the relational model an ideal choice for storage
management, users should be permitted to view their
application domains in terms of conceptual objects.
When a semantic schema for the relational database
exists, considerable support can be provided for the
design of view-objects, and automatic retrieval and
update can be accomplished [3][4]. In the absence of a
semantic schema, however, some means must be found
to

� model the semantics of the database,

� model the semantics of the application domain,
and

� provide a mapping between these two models that
permits retrieval from and update to the database
in terms of the application model.

If the retrieved objects are to be processed in a con-
ventional manner, any representation language that
meets these three requirements will su�ce. If, on the
other hand, the objects are to be manipulated by a
knowledge-based system, it is desirable to choose a
representation language that supports

� typing and classi�cation of domain concepts,

� support for rule-based programming, and

� support for logic-based programming.

While some relational systems (e.g., POSTGRES
[13]) provide support for rule-based programming, and
any Prolog [9] system with a database interface will
provide support for logic-based programming, the pro-
cessing in both cases is applied not to conceptual ob-
jects in the domain, but to tuples in the database. In
contrast, current-generation knowledge representation
systems (KRSs) such as Loom [10] provide logical and
procedural operators, and thus permit both logic- and
rule-based programming to be applied to conceptual
objects. Such a KRS is, we believe, the ideal language
in which to implement object-based views on exter-
nal databases (EDBs), since it provides ample repre-
sentational and inferential power for describing both

the explicit and implicit di�erences in the semantics
of multi-database systems.

The Loom Knowledge Representation Language
[10] traces its lineage back to KL-ONE [6], but has
incorporated and extended the separation of the ter-
minological and assertional components, where the
terminological component is used for de�nition of
generic concepts, and the assertional component is
used for the creation of and reasoning about instances
of those concepts. It has also incorporated a procedu-
ral component, to support rule-based programming.
LIM augments Loom's terminological component with
DB mapping constructs, and extends Loom's asser-
tional component with information retrieved from
databases. Instances retrieved from databases can be
operated upon by both Loom's assertional language
and its rule language. LIM uses Loom to represent
both the semantic schema for a relational DB and ap-
plication domain models.

LIM is being developed in the context of the
DARPA/Rome Labs Planning Initiative (DRPI),
a multi-site project whose goal is the develop-
ment and introduction of a knowledge-based sys-
tem to support military logistics planning for the
the United States Transportation Command (US-
TRANSCOM), which is responsible for planning
movements of troops and materiel. The current plan-
ning system is a 70s-vintage batch-oriented system
that uses large, heavily-encoded records; the plan for
even a moderate-sized operation is enormous, with
some containing hundreds of thousands of records, ef-
fectively precluding any purely memory-resident stor-
age scheme. The system has recently been extended
to use a relational database in place of
at �les for
some applications. The designers of the relational DB
schema were constrained by a need to adhere fairly
closely to the original data format for the plan records,
since the planners are quite familiar with the current
structure of the data. Our project is thus faced with
the task of interfacing a KRS to a collection of legacy
databases that lack a coherent semantic schema.

Related work within the DRPI is being performed
by groups at ISI [1][2] and UCLA [8]. ISI's SIMS

(Services and Information Management for Decision
Systems) is designed to map the queries of users, who
are presumed to be ignorant of the structure and con-
tent of a collection of databases, into retrievals against
those databases. UCLA's COBASE (Cooperative
Database) is a knowledge-based extension to standard
relational query languages (e.g., SQL) that provides
fuzzy operators supporting query relaxation and ap-
proximate answers.

Loom
objects

and
values

Tuples as Lisp
S-Expressions

Parsed
Loom Queries

DML
Queries

DML
Queries

DML
Queries

Schema
Info.,

Tuples

Loom
queries

Loom objects
and values

EDB EDB EDB

Lisp

Loom KB
Loom

Application

LIM

IDI

Schema
Info.,

Tuples

Schema
Info.,

Tuples

Schema
info

Schema
info

Figure 1: LIM Overview

Some work has been done toward implementing
the view-object model on relational DBs for which
a semantic schema exists. In particular, Barsalou
and Wiederhold [3][4] describe a system based on the
Structural Model [14], an extended entity-relationship
model. In this system, the user selects a pivot rela-
tion that includes the intended key(s) for the object
being de�ned. The various link-types in the structural
schema are then traversed, and, using a relevancy met-
ric, a tree of candidate relations - rooted at the pivot
- is generated. The user then prunes this tree, leaving
only the relations and attributes that s/he wishes to
have in the de�ned object. Once the object is de�ned,
it is linked into an object hierarchy. Barsalou and
Wiederhold provide algorithms that assure that ob-
jects are retrievable, and, if desired, updatable. The
view-concept model described here is intended as a
knowledge-based extension of the view-object model;
it is also based upon an Ingres DB interface we devel-
oped for the CYC KRS [12].

2 Architecture and Operation

LIM acts as an intermediary between a Loom ap-
plication and one or more EDBs, using the services of
the IDI to access the EDBs. The inter-relationships
among the various components of the overall system
are illustrated in Figure 1.

LIM uses the IDI to read the EDB schema, then
builds a Loom representation of the schema based on
this information. Subsequently, in response to a query
from a Loom application that requires access to the
EDB, LIM parses the query and uses the IDI to gen-

idno-1 idno-2name-1 desc-1 name-3name-2

Application KB
(AKB)

Semantic
Mapping KB

(SMKB)

External
Database

(EDB)

SMKB-to-DB column
mapping

Loom concept

Loom relation

AKB-to-SMKB
mapping

Figure 2: LIM Knowledge Base Architecture

erate the appropriate DML, then processes the tuples
returned to it by the IDI into the form requested by
the application.

2.1 Overview

Processing within LIM is directed by a multi-layer
KB architecture that is built in a mixed-initiative pro-
cess. Figure 2 depicts the layers in this architecture.

The Semantic Mapping KB (SMKB) is an isomor-
phic representation of the EDB schema, with each
table in the EDB represented by a Loom concept,
and each column represented by a Loom relation. It
is constructed by the Knowledge Base Administra-
tor (KBA) from an automatically-generated schema
model, primarily by de�ning semantic types and sub-
stituting these for the simple EDB types that appear in
the original schema model. Application KBs (AKBs),
built by application writers, refer to concepts and re-
lations in the SMKB.

LIM, given a query involving a concept in the
SMKB or AKB,

� obtains schema mapping information from the
SMKB;

� translates the query into an equivalent DML
query with the aid of the IDI, which submits the
query and assembles the result; and

� restructures the returned tuples as necessary, gen-
erating any KB structures required to satisfy the
query.

With regard to the last point, a fundamental prin-
ciple of LIM is that KB structures are created only on

demand: queries are satis�ed without creation of KB
objects whenever possible, to minimize overhead and
bookkeeping. Control over object creation is entirely
at the discretion of the application.

2.2 Operation

The processing performed by LIM is illustrated in
Figure 3.

2.2.1 Schema Generation

When a DB is opened via the IDI, schema informa-
tion is cached by the IDI in local data structures. The
schema generation module reads this information, and
generates one Loom concept per table and one Loom
relation per column. The relations corresponding to
the columns of a table are then added as roles of the
corresponding concept via value restrictions.

2.2.2 Schema Augmentation

The automatically-generated schema model is a lit-
eral representation of the EDB schema. One impli-
cation of this is that the semantics of relationships
among tables are not explicit, since the schema does
not identify the columns in the EDB over which joins
are semantically reasonable. In creating the SMKB,
the KBA augments this literal schema representation
by de�ning semantic types to explicate the semantics
of joins. In particular, where two relations represent
columns over which a join is semantically reasonable,
the value restrictions on these relations in their re-
spective concepts are changed to the same KB type.
For example, two DB columns whose DB type is in-
teger, but which both represent a particular kind of
identi�cation number, would have their value restric-
tions specialized to a concept representing that kind
of identi�cation number.

In addition to modi�cation of role value restrictions,
it may be desirable to represent the structural seman-
tics of the domain more closely than is possible in the
relational model. Such restructuring may be speci�ed
in the AKB by de�ning view-concepts, and mapping
their roles to those of SMKB concepts. When such
semantic restructuring takes place, it is necessary to
ensure that the proposed structures are retrievable,
and { if desired { updatable. Retrievability requires
that all participating tables can be joined, and that
su�cient information (i.e., keys) is preserved in the se-
mantic representation to permit unambiguous access
of all necessary tuples. Updatability requires that all

Loom KRS

SMKB

Loom KRS

SMKB

AKB

LIM

Loom KRS

schema
model

Loom KRS

KBA
modifies
schema
model

Application
writer
creates
AKB

model
created

automatically
from

schema

Loom
assertions

Loom
assertions

values
and Loom
objects

Schema
mapping

information

Loom concepts
and relations

for query

Request
for schema
information

Schema
information

Queries

Parsed
queries Tuples as Lisp

S-Expressions

IDI

Loom
Application

Update
requests

Parsed
update

requests

Schema
Model

Generation

Query/
Update

Translation

Object
Generation

Schema
Augmentation

Figure 3: LIM Internal Architecture and Processing

key, index, and non-null columns in the DB tables un-
derlying a view-concept in the AKB are included in
the view-concept.

Retrievability of view-concepts is assured via a
mixed-initiative dialog, in which the system computes
all semantically meaningful ways of joining all of the
DB tables required for the construction of a view-
concept; if there is more than one such alternative,
LIM presents them for selection by the user. It is not
possible for the system to compute join paths with-
out user intervention, since any given pair of tables
might be joinable in several ways, not all of which are
semantically equivalent.

Updatability of view-concepts, when required, is
checked automatically by the system. If any necessary
information is unavailable in the view, the system en-
ters another mixed-initiative dialog with the user to
include the missing information.

2.2.3 Query Generation

Given a LIM query, the query generation module:

1. identi�es variables in the query corresponding to
relations that are derived from the EDB,

2. identi�es variables in the query corresponding to
concepts having roles derived from the EDB, and

3. constructs a DML query and submits it to the IDI
for processing against the EDB.

If the query requests the return of Loom objects,
rather than just values from the EDB, the DML query
will select and return values in each tuple to permit
generation of the appropriate Loom objects.

2.2.4 Object Generation

A LIM query consists of a list of output variables
to be bound, and one or more statements, in a syntax
similar to that of the Loom assertional language, that
produce sets of bindings for these variables. It is easily
determined from the syntax of a query whether a par-
ticular output variable corresponds to a role value or a
concept. For a variable corresponding to a role value,
the value retrieved from the EDB can be returned to
the application, possibly with some conversion due to
the di�erences between semantic types used in the KB
and simple DB types. For a variable corresponding to
a concept, however, the application will expect to have
returned to it an instance of that concept; this requires
that LIM be capable of creating Loom instances using
values retrieved from the EDB. LIM's object genera-
tion module extracts from the returned tuples all val-
ues requested speci�cally for the purpose of building
Loom objects, creates the objects, and returns them
to the application.

2.2.5 Update

The present implementation of LIM does not sup-
port update; however, we have studied the issues, and
will describe the planned implementation.

Loom instances can be constructed incrementally,
by asserting the existence of the instance and then
subsequently asserting facts about it. Furthermore,
classi�cation of an instance does not take place as a re-
sult of asserting its existence, or asserting facts about
it, but must be explicitly requested. As noted in sec-
tion 2.2.2, if an instance is to be stored into an EDB,
an update cannot be performed unless su�cient infor-
mation (e.g., values for joins) is available. While it
would be possible, if somewhat di�cult, to determine
the point at which su�cient information has been as-
serted about an instance to permit storage in the EDB,
it is not possible to determine whether this is what the
user intends. We therefore separate instance creation
from a request for storage in the EDB.

When a user issues a store request, LIM veri�es
that the instance contains su�cient information and
does not violate any conditions imposed by the DBMS;
if both of these criteria are met, the EDB is updated
via the IDI. At this point, we are uncertain whether
Loom instances that are successfully stored should be

Application
KB

(AKB)

Semantic
Mapping KB

(SMKB)

External
Database

(EDB)
Geoloc
_codeName

latitude longitudegeoloc_code

geoloc

port-loc

string

Geoloc
_code

Long-
itude

Lati-
tude... ...

... ...

... ...

...
GEOLOCPORTS

port-
name

port-
latitude

port-
longitude

ports

SMKB-to-DB column
mapping

Loom concept

Loom relation

AKB-to-SMKB
mapping

Figure 4: Example of use of KB mapping layers

erased from the Loom KB, since they are now acces-
sible from the EDB via LIM. This will be the subject
of further study, and may require observation of usage
patterns in an initial implementation.

3 Example

To illustrate the processes described in Section 2,
we present a small, fairly simple example. Let us pre-
sume that an application requires information about
the location of various ports. In the USTRANSCOM
databases with which we are working, information
about ports is stored in a table called PORTS, and in-
formation about geographic locations in a table called
GEOLOC. The various KB layers representing the
mapping from application to EDB are shown in Fig-
ure 4.

Note that from a user's perspective, the SMKB and
DB pre-exist, and de�nition of application concepts
thus appears to be a top-down process; however, in or-
der to illustrate the process of de�ning the mappings,
we will proceed bottom-up.

The bottom panel shows a simpli�ed tabular repre-
sentation of the schema de�nitions for the two tables,
PORTS and GEOLOC. The middle panel shows the
SMKB concepts representing the two tables. These
were created by modifying the value-restrictions in
the Loom de�nitions automatically generated by the
schema generation module. For example, the initial
Loom concept de�nition for the portion of the GE-
OLOC table shown is:

(defconcept Geoloc

:is-primitive

(:and semantic-db-concept

(:the Geoloc.Geoloc_Code String)

(:the Geoloc.Longitude Number)

(:the Geoloc.Latitude Number)))

Note that role value restrictions correspond to the
simple data types (e.g., string, number) that appear
in relational databases. This de�nition is modi�ed by
the KBA to produce the SMKB de�nition:

(defconcept Geoloc

:is-primitive

(:and semantic-db-concept

(:the Geoloc.Geoloc_Code Geoloc_Code)

(:the Geoloc.Longitude Longitude)

(:the Geoloc.Latitude Latitude)))

For example, the role of Geoloc that corresponds
to the column geoloc code has type string; this has
been modi�ed in the SMKB to geoloc code. This
permits LIM to infer that Ports and Geoloc can be
joined over their geoloc code roles.

Loom de�nitions for the semantic type hierarchies
above the types used in Geoloc are:

(Defconcept Identifier :Is-Primitive Thing)

(Defconcept Code :Is-Primitive

(:and String Identifier))

(Defconcept Location :Is-Primitive Code)

(Defconcept Geoloc_Code :Is-Primitive Location)

(Defconcept Measured_Qty :Is-Primitive Number)

(Defconcept Degrees :Is-Primitive Measured_Qty)

(Defconcept Latitude :Is-Primitive Degrees)

(Defconcept Longitude :Is-Primitive Degrees)

Finally, the top panel shows a simple application-
level concept derived from information in both DB ta-
bles. The following is the Loom concept de�nition for
the AKB concept port-loc, which was created manu-
ally:

(defconcept port-loc

:is-primitive

(:and view-concept

(:the port-name string)

(:the port-latitude latitude)

(:the port-longitude longitude)))

This is mapped to the EDB by making the follow-
ing declarations, which are stored as assertions in the
Loom KB:

(def-db-mapping port-name port-loc ports.name)

(def-db-mapping port-latitude port-loc

geoloc.latitude)

(def-db-mapping port-longitude port-loc

geoloc.longitude)

Queries can be posed against either the SMKB or
the AKB. (Note: the names used in the following ex-
amples have been changed; we have not yet obtained
permission to publish the data in our test database.)
For example, the query:

(db-retrieve (?name)

(:and

(Ports ?port)

(Geoloc ?geoloc)

(Ports.Geoloc_Code ?port ?geocode)

(Geoloc.Port_Code ?geoloc ?geocode)

(Ports.Name ?port ?name)

(Geoloc.Country_State_Code ?geoloc "DP")

(Ports.Clearance_Rail_Flag ?port "Y")))

(\What are the names of ports in Dogpatch that
have railroad capabilities at the port?") can be posed
against the SMKB. The SQL generated by LIM and
the IDI for this query is:

SELECT DISTINCT RV1.name

FROM PORTS RV1, GEOLOC RV2

WHERE RV2.geoloc_code = RV1.geoloc_code

AND RV2.country_state_code = `DP'

AND RV1.clearance_rail_flag = `Y'

The values returned are:

("Cair Paravel" "Minas Tirith"

"Coheeries Town" "Lake Woebegon" "Oz")

The query:

(db-retrieve ?port

(:and (port-loc ?port)

(port-name ?port "Oz")))

(\Return a port-loc object for the port whose
name is `Oz' ") can be posed against the AKB. The
SQL generated by LIM and the IDI for this query is:

SELECT DISTINCT RV1.name,

RV2.latitude,

RV2.longitude

FROM PORTS RV1, GEOLOC RV2

WHERE RV2.geoloc_code = RV1.geoloc_code

AND RV1.name = `Oz'

The value returned by this query is an object whose
Loom de�nition is:

(TELL

(:ABOUT PORT-LOC59253

PORT-LOC

(PORT-LONGITUDE 98.6)

(PORT-LATITUDE 3.14159)

(PORT-NAME "Oz")))

4 Status

Our current system is implemented in Lucid Com-
mon Lisp and runs on a SUN SPARCstation 2. LIM
uses both the IDI [11] and the Loom knowledge rep-
resentation language [10]. The IDI uses one of sev-
eral protocols to access Oracle databases on a remote
server. We have developed the �rst prototype of the
LIM system described above and a test set of approx-
imately 50 queries. The queries have been executed
from a running Loom system against a remote Oracle
database; update is not yet supported. Several other
participants in the DRPI, including ISI, UCLA, and
BBN, are presently using the prototype implementa-
tion.

Our plans for extensions to LIM include support
for:

update: LIM's query module extends Loom's re-
trieval capabilities. We are currently designing
an update module which extends Loom's asser-
tion language.

hierarchical concepts: Complex knowledge repre-
sentation concepts have hierarchical structure
that cannot be directly mapped from a relational
database; LIM supports simple hierarchical mod-
els, and we are currently extending LIM's ability
to retrieve and manipulate hierarchical Loom ob-
jects.

multi-DB access: Our current implementation of
LIM assumes that all database entities referenced
in a single Loom concept are from the same
database. We plan to allow for multi-database
access, ultimately by integrating our system with
SIMS multi-database query planning system; our
near-term solution may involve simple distributed
query factoring at the semantic mapping layer.

data-rendering: It is often the case that semantic
types do not have simple relationships to the sim-
ple types in the EDB; we are planning to imple-
ment a range of type-mapping, or data-rendering,
strategies, possibly with support from SIMS[1][2].

In addition, we hope to integrate LIM with
SIMS[1][2] and COBASE[8], and to produce jointly
with their developers a system providing integration
of access to multiple sources, approximate queries and
answers, and fault tolerant knowledge base access to
databases. Some of the initial integration results are
reported elsewhere in these proceedings, c.f. [2].

5 Conclusion

We have described a view-concept model which uses
a knowledge representation language, Loom, to de-
�ne the semantic schema of a database. This de�-
nition has two levels, each of which is of utility to
a knowledge-based application. Both are based on a
verbatim model of the database; for legacy databases,
this can be generated automatically from the database
schema, and can be used by any knowledge-based ap-
plication which would assist a knowledge base admin-
istrator in the development of the semantic mapping
layer (i.e., a knowledge-based semantic schema).

The semantic mapping layer de�nes the relevant
concepts supported by the database domain; in our
current knowledge bases, the semantic mapping layer
adds semantic types to the automatically-generated
schema model. We envision additional information in
the semantic mapping layer, including composites of
database objects which form larger conceptual struc-
tures.

Finally, the view-concept model includes an
application-speci�c layer that de�nes the mapping be-
tween an application domain's conceptual structures
and the semantic de�nition of database concepts. We
believe that the structured approach embodied in
the view-concept model signi�cantly elucidates the
knowledge-base-to-database interface problem. Fur-
ther, we expect that grounding the implementation in
the IDI will support reasonable performance.

Our preliminary implementation includes algo-
rithms for properly de�ning objects to determine
retrievability and updatability, as well as retrievals
against a database. In the coming year, we will be
developing a more sophisticated application for the
military transportation logistics domain using LIM.
We expect feedback from this experience primarily to
concern the completeness of the application knowledge
base, and to give us valuable performance data.

Acknowledgements

The authors wish to acknowledge the contribu-
tions of the current Paramax Knowledge-Based Plan-
ning group, speci�cally Rebecca Davis, Rich Fritzson,
Robin McEntire, and Barry Silk (US Government). In
addition, the �rst version of the Intelligent Database
Interface was developed by Tony O'Hare, currently at
IBM - Research Triangle, and Larry Travis of the Uni-
versity of Wisconsin.

References

[1] Yigal Arens, \Services and Information Manage-
ment for Decision Support," AISIG-90: Proceed-

ings of the Annual AI Systems in Government

Conference, George Washington University, Wash-
ington, DC, May, 1990.

[2] Yigal Arens, \Planning and ReformulatingQueries
for Semantically-Modeled Multidatabase Sys-
tems," Proceedings of the First International Con-
ference on Information and Knowledge Manage-

ment, Baltimore, MD, November, 1992.

[3] Thierry Barsalou and Gio Wiederhold, \Applying
a Semantic Model to an Immunology Database",
1987.

[4] Thierry Barsalou, \An Object-Based Architecture
for Biomedical Expert Database Systems", 1988.

[5] Thierry Barsalou, Arthur M, Keller, Niki
Siambela, and Gio Wiederhold, \Updating Rela-
tional Databases through Object-Based Views",
ACM, 1991.

[6] Ronald Brachman and James Schmolze, \An
Overview of the KL-One Knowledge Representa-
tion System", Cognitive Science 9, 1985, pages 171-
216.

[7] M. Brodie, J. Mylopoulos, and J. W. Schmidt,
editors, On Conceptual Modelling: Perspectives

from Arti�cial Intelligence, Databases, and Pro-

gramming Languages, Springer-Verlag, 1984.

[8] Wesley W. Chu, Andy Y. Hwang, Rei-Chi Lee,
Qiming Chen, Matthew Merzbacher, and Her-
bert Hecht, \Fault Tolerant Distributed Database
System via Data Inference", Proceedings of the

Ninth Symposium on Reliable Distributed Systems,
Huntsville, Alabama, October 9-11, 1990.

[9] R. Kowalski, Logic for Problem Solving, Elsevier,
1979.

[10] Robert MacGregor and Robert Bates, \The Loom
Knowledge Representation Language", Proceed-

ings of the Knowledge-Based Systems Workshop,
April 1987.

[11] Don McKay, Tim Finin, and Anthony O'Hare,
\The Intelligent Database Interface", Proceedings
of the 7th National Conference on Arti�cial Intel-

ligence, 1990.

[12] G. Christian Overton, Kimberle Koile, and Jon A.
Pastor, \GeneSys: A Knowledge Management Sys-
tem for Molecular Biology", Computers and DNA,
Santa Fe Institute, G. Bell and T. Marr, editors,
Addison-Wesley, Reading, MA, 1990.

[13] Michael Stonebraker and Larry Rowe, The Post-
gres Papers, University of California - Berkeley,
1987.

[14] Gio Wiederhold and R. ElMasri, \The Structural
Model for Database Design", inEntity-Relationship
Approach to System Analysis and Design, pages
237-257, North Holland, 1980.

[15] Gio Wiederhold, \Views, Ob-
jects, and Databases", IEEE Computer, Vol. 19,
no. 12, December 1986, pages 37-44.

