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Abstract. One of the essential features of a software agent is its ability
to cooperate with other software agents. This cooperation requires, in
general, that software agents be able to communicate in an appropriately
rich agent communication language (ACL) and associated protocols. For
an ACL to be effective in an open environment like the Internet, it must
support security, privacy, the integrity of data, and authentication of
agent identity. We discuss some basic and extended security requirements
for software agents and an architecture to satisfy those requirements for
KQML-speaking agents. Many of these security features will be provided
by transport mechanisms which carry the ACL (e.g., sockets, HTTP,
SMTP). However, security properties must be part of and reflected in
the ACL model and cannot simply be relegated to the lower levels of the
communication protocol stack.

1 Introduction

One of the essential features of a software agent is its ability to cooperate with
other software agents. This cooperation requires, in general, that software agents
be able to communicate in an appropriately rich agent communication language
(ACL) and associated protocols. For an ACL to be effective in an open environ-
ment like the Internet, it must support security, privacy, the integrity of data,
and authentication of agent identity.

1.1 Why agent security?

Security, privacy and authentication are always desirable and often necessary
properties of most general communication systems. Security features are being
designed into the Internet communication standards (e.g., sockets, email, corba,
http, etc.) that software agents use to communicate among themselves. One



could argue that we only need to design the security architecture into these
basic communication substrates and agent communication systems will inherit
them.

Although basic security features and properties will be provided by the un-
derlying substrate, it is important that security be explicitly modeled at and
reflected in the agent communication level for several reasons. Agents must, in
general, be aware of the security aspects of their conversations with other agents.
There may be costs associated with some of the security features and agents may
want to be selective about when they are used. Moreover, not all of an agent’s
interlocutors will use every security mechanism; an agent might use this infor-
mation to decide with whom to communicate, what to say, or whether secure
protocols should be invoked.

For example, an agent might use a notion of lazy authentication, in which it
accepts information from other agents without requiring a relatively expensive
authentication protocol to establish identity. At some later time when a fact
from an as yet unauthenticated source becomes relevant to an agent’s reasoning,
it might contact that source and engage in an authentication dialogue to verify
the agent’s identity and the fact’s integrity.

Consider how human agents live and communicate in a world in which we
have a range of communication media offering a wide range of security and
privacy options. For some of us (more every day), security is important and
we actively model and reason about the security of our communication. The
same will be true of software agents that reside in a complex environment of
communication options.

1.2 KQML

Knowledge Query and Manipulation Language (KQML) [1] is a communica-
tion language and protocol that enables autonomous and asynchronous software
agents to share their knowledge and work towards cooperative problem solving.
It was developed as a part of the Knowledge Sharing Effort [24, 22, 16]. The
KQML language can be thought of as consisting of three layers: the content
layer, the message layer, and the communication layer. The content layer bears
the actual content of the message, in the program’s own representation language.
The communication level encodes a set of message features which describe the
lower level communication parameters, such as the identity of the sender and
recipient, and a unique identifier associated with the communication. The mes-
sage layer forms the core of the KQML language, and determines the kinds of
interactions one can have with a KQML-speaking agent. A primary function
of the message layer is to 1dentify the protocol to be used to deliver the mes-
sage and to supply a speech act or performative which the sender attaches to
the content (such as that it is an assertion, a query, a command, or any of a
set of known performatives). In addition, since the content may be opaque to a
KQML-speaking agent, this layer also includes optional features which describe
the content language, the ontology it assumes, and some type of description of



the content (such as a descriptor naming a topic within the ontology). These fea-
tures make it possible for KQML implementations to analyze, route and properly
deliver messages even though their content is inaccessible.

1.3 Security Requirements

We arrived at the following requirements for a KQML security model based on an
analysis of the security models for Privacy Enhanced Mail [4], CORBA [3] and
DCE [5]. Interested readers are referred to Voydock and Kent [2], for a thorough
treatment of security threats and mechanisms to counter them. The security
capabilities that should be supported include:

— Authentication of principals. Agents should be capable of proving their identities
to other agents and verifying the identity of other agents.

— Preservation of message integrity. Agents should be able to detect intentional or
accidental corruption of messages.

— Protection of privacy. The security architecture should provide facilities for agents
to exchange confidential data.

— Detection of message duplication or replay. A rogue agent may record a legitimate
conversation and later play it back to disguise its identity. Agents should be able
to detect and prevent such playback security attacks.

— Non-repudiation of messages. An agent should be accountable for the messages
that they have sent or received, i.e., they should not be able to deny having sent
or received a message.

— Prevention of message hijacking. A rogue agent should not be able to extract the
authentication information from an authenticated message and use it to masquer-
ade as a legitimate agent.

We also consider several additional constraints or desiderata for the archi-
tecture. First, the security architecture should not depend on the semantics of
KQML performatives. The security model should be general and flexible enough
to support different models of agent interaction (e.g., ContractNet, electronic
commerce). Neither should the architecture depend on the features offered by
any transport layer since we want to facilitate agents to communicate across
heterogeneous transport mechanisms and to extend the security model to ac-
commodate embedded KQML messages. Second, we desire a model which al-
lows light-weight agents without cryptographic capabilities to authenticate the
sender of a message using the services of trusted euthenticator agents. Finally,
we want to allow agents the flexibility to use different cryptographic algorithms
so the security architecture should not have hard dependencies on any specific
cryptographic algorithm. Similarly, we reject systems that assume a global syn-
chronization of time; such synchronization is difficult to achieve and leads to
further security issues of its own [7].

2 Message—Level Security

To accommodate the asynchronous nature of general ACLs like KQML, the
model expects a secure message to be self authenticating; it does not support



any challenge/response mechanism to authenticate a message after it has been
delivered. The architecture provides two security models, basic and enhanced.
The basic security model supports authentication of sender, message integrity
and privacy of data. The enhanced security model additionally supports non-
repudiation of origin (proof of sending) and protection from message replay at-
tacks. The enhanced security model also supports frequent change of encryption
keys to protect against cipher attacks.

2.1 Cryptographic background

This subsection summarizes the cryptographic techniques used by the architec-
ture and the new performatives and parameters that have been introduced to
implement the architecture. A fuller exposition may be found in Thirunavukka-
rasu [26].

Encryption Keys. An agent that implements the proposed security architecture
should have a master key, K,, which 1t will use to communicate with other
agents. This key can be based on a symmetric key or an asymmetric key (e.g.,
public key) cryptosystem. If a symmetric key mechanism is used, we suggest
that the agent, in addition to the general master key, also use a specific master
key, Ka1,a2 for each agent with which it communicates; doing so will provide
better privacy and stronger authentication. If an agent does not share a master
key, Ka1 42 with another agent, it can use its master key, K,, or it can use the
services of a central authentication server to generate such a key.

Sesston key. In the enhanced model, the agents use an additional key, the session
key, to ensure privacy, message integrity and proof of identity. Agents can use
either the session key or master key for exchanging messages, and must inform
the receiving agent of the key that was used for encryption to ensure proper
decryption.

Message ID. The message 1D is used in the enhanced security model to protect
agents from message replay attacks. When the two agents establish a session key,
they also exchange a message ID, which the sender uses in the next message.
Each message from an agent carries a message ID and a new message ID for the
next message. Each message ID is used only once to prevent replay and they are
encrypted using the session or master key for security.

Message Digest. Each secure message generated using this architecture has a
message digest or signature associated with it. The digest is calculated using a
secure hash function like MD2, MD5 or SHS [9]. This hash function computes a
digital fingerprint of the message (i.e., it acts as a “checksum” for the message).
The sender then encrypts this digest using the session or master key and attaches
it to the message. This encrypted message digest forms the core of the security
architecture. The receiver of a message uses the digest to verify the identity of
the sender and the integrity of the message. The digest also protects the message
ID field from being hijacked and used in a different message.



2.2 Proposed Changes to KQML

To implement this security architecture we propose several new KQML perfor-
matives, several new parameters and some modifications to a proposed standard
ontology for agents.

Ontological assumptions. We assume that KQML-speaking agents use a basic
agent ontology, which provides a small set of classes, attributes and relations
helpful in talking about agents, their properties and the relationships and events
in which they partake. Assuming this ontology, our security architecture intro-
duces a new sub-class of agent named authenticator and a new relation, key/d
which describes a key used by an agent:

(key <sending-agent> <receiving-agent>
<master-key?> <key-type> <encrypted-key>)

An instance of this relation specifies a key that the sending agent will use in
secure communication with the receiving agent. If the third argument is {rue
then the key is a master key, else it is a session key. If the receiving agent is
unspecified, then the key is used by the sending agents for communication with
all agents. Note that this would typically be the case for asymmetric keys.

Several new KQML parameters are required to implement the security ar-
chitecture:

:auth-digest (<digest-type> <encrypted-digest>). The digest-type speci-
fies the hashing function used (e.g., MD4, MD5, etc.) to compute the message
digest. The encrypted-digest is the message digest encrypted using the key spec-
ified by the :auth-key parameter. This parameter should be present to prevent
message hijack, and to provide for sender authentication and integrity assurance.

:auth-msg-id (<msg-id> <encrypted-msg-id>). This parameter is required
only in the enhanced security model where 1t is used prevent message replay. The
value is a list whose first element is the agreed upon random string, or NIL if
this is the first message. The second element specifies the message ID for the next
message and is encrypted using the key specified by the :auth-key parameter. For
effective prevention of message replay, this parameter should be present in each
message.

:auth-key (<bool> <key-type> <encrypted-key>). This parameter spec-
ifies the key being used to encrypt any :auth-digest and :auth-msg parameters
present. If the first element of the triple is true then the master key is used,
otherwise the session key is used.

The following new KQML performatives have been added to implement the
security architecture:

auth-link. The sender wishes to authenticate itself to the receiver and set
up a session key and message 1D.

auth-challenge. The sender challenges the identity of the receiver in response
to an auth-link. The sender encrypts a random string using the master key K ,
or K, and sends it as :content.



auth-private. The sender is sending a confidential message to the receiver.
The :content parameter contains the encrypted message and the rauth-key pa-
rameter specifies the encryption key. The :auth-digest parameter should be present
to verify the identity of the sender and the :auth-msg-id and :auth-key parameters
may be present if enhanced security model is used.

help. We introduce a new generic performative by which an agent can ask
another for help in processing the the embedded performative given as the value
of the :content parameter. The nature of the "help” 1s determined by the em-
bedded performative and the value of the :ontology parameter. If the :ontology
is authentication, then a crypto-unaware agent is enlisting the help of a trusted
friend to process a performative it has received, which is included as the value of
the :content parameter. This embedded message can be either an auth-link or a
generic message to be authenticated. In the case of an auth-link (i.e., a challenge
initiation), the appropriate response is a reply with a random challenge string.
In the case of a message to be authenticated, the response will be an error or a
reply to forward.

2.3 Security Protocol Examples

When R2D2 sends a secure message to C3PO, it computes a message digest and
encrypts it using the master key (as indicated by the value T for the :auth-key
parameter).

<performative>
:sender R2D2 :receiver C3P0 :auth-key T
rauth-digest (<digest-type><encrypted-digest>)

Alternatively, if R2D2 needs to send a confidential message to C3PO, it can
encrypt the message and embed it in an auth-private performative.

auth-private
:sender R2D2 :receiver C3P0 :auth-key T
rauth-digest (<digest-type> <encrypted-digest>)
:content <encrypted-KQML-message>

This model can be used when R2D2 does not know the recipient in advance,
e.g., for messages to be broadcast or routed by a facilitator agent, or if R2D2
and C3PO do not require prevention of message replay and can afford the cost
of using the master key.

In the above message, the :auth-digest parameter can be used to verify the
integrity of the message, authenticate the sender and ensure non-repudiation of
origin (if the master key is asymmetric). If the message has been corrupted, the
message digest will not agree with the value of the :quth-digest parameter. Since
the message digest is encrypted with the master key of the :sender, only the
:sender or the agents with which the :sender shares the encryption key could
have generated the message. If the master key is an asymmetric key, only the
:sender could have generated the message, as only the :sender knows the private
key that has been used for encryption. Note that we can only verify the identity



of the generator (i.e., that the message was encrypted by the :sender agent) of
the message. This message could be a replay of a legitimate message previously
sent by the generator.

The enhanced security model adds prevention of message replay, and stronger
non-repudiation of message origin (if asymmetric keys are used). Even though
non-repudiation can be achieved in the basic security model, we can only be sure
that the message was generated at some point by the sender; a rogue agent can
replay a message without detection under the basic model.

In Thirunavukkarasu [26] we demonstrate how the new KQML performatives
and parameters can be used to communicate securely, and describe the role of
authenticator agents for key registration and management. In the remainder of
this section we give an example of the use of the enhanced security model for
self authentication. The next section shows how the protocols can be captured
in Protolingua, a conversation specification language.

Suppose that agent R2D2 has cryptographic capabilities and would like to
prove its identity to agent C3PO. The agents would follow the following hand-
shake protocol to achieve it.

1. auth-link

2. auth-challenge
3. reply

4. reply/error

5. performative

First, R2D2 sends an auth-link performative to C3PO.

auth-link (1)
:sender R2D2 :receiver C3P0
:reply-with <expression>

If C3PO will not authenticate senders, it can respond with an error, otherwise
it sends an euth-challenge with a random string encrypted using the master key.
A random string is used to prevent message replay.

auth-challenge (2)
:sender C3P0 :receiver R2D2
rin-reply-to <expression>
:reply-with <expression>
:content <encrypted-random-string>

R2D2 responds with a reply performative whose rauth-digest, :auth-msg-id and
new session key (if present) are encrypted using the master key. The value of
rcontent and :auth-msg-1d is the decrypted random string. The session key pa-
rameter is optional.

reply (3)
:sender R2D2 :receiver C3PO
rin-reply-to <expression>
:reply-with <expression>



rauth-digest (<digest-type> <encrypted-digest>)
rauth-msg-id (Kmsg-id> <encrypted-msg-id>)
rauth-key (T <key-type> <encrypted-key>)
:content <random-string>

Now, C3PO can verify if the sender is R2D2 by inspecting the random string.
Only R2D2 (or in the case of symmetric key, one of the other agents that shares
the same key) could have decrypted the random string as it was encrypted using
the master key. The message digest can be used for non-repudiation if asymmetric
keys are used.

C3PO responds with a reply or an error depending on the success of authen-
tication (3).

Now, R2D2 can send an authenticated message to C3PO by using the session
key or master key to encrypt the message digest and a non replayable message
by using the :auth-msg-i1d parameters.

<performative> (4a)
:sender R2D2 :receiver C3PO
rauth-digest (<digest-type> <encrypted-digest>)
rauth-msg-id (Kmsg-id> <encrypted-msg-id>)
rauth-key (<bool> <key-type> <encrypted-key>)

Or if R2D2 needs to send a confidential message to C3PO, it can encrypt the
message and embed it in an auth-private performative.

auth-private (4b)
:sender R2D2 :receiver C3PO
rauth-digest (<digest-type> <encrypted-digest>)
rauth-msg-id (Kmsg-id> <encrypted-msg-id>)
rauth-key (<bool> <key-type> <encrypted-key>)
:content <encrypted-KQML-message>

Further examples of the enhanced security model can be found in Thirunavukka-
rasu [26].

3 Conversation—Level Security

The security mechanisms presented here demand specific sequences of message
exchange. Such sequences form a good match with our natural tendency to view
communication among agents as conversation, in the same way we view com-
munication among people as conversation. Unfortunately, KQML is a message-
oriented language. As such, it lacks a mechanism for collecting messages into
conversations, or for describing conversations in the abstract. Thus, an addi-
tional formalism is needed to allow the specification of, engagement in, and
reasoning about KQML conversations.



Fig.1. A deterministic finite—state automaton representing a conversation for
authenticating the transmission of a KQML performative

3.1 Conversation Specification

A number of conversation formalisms have been presented in the literature [12,
23]. We believe that a conversation formalism must exhibit two properties to be
generally useful for KQML-speaking agents:

1. Conversation specifications should be easy to express in ways that are useful
to both people and machines.

2. All agents that participate in a conversation should be able to share a single
description of that conversation.

We have developed a conversation specification mechanism that meets these
criteria, called Protolingua. In Protolingua, conversations are specified as de-
terministic finite-state automata (DFAs). For example, the self authentication
protocol used in Section 2.3 can be expressed graphically, as shown in Figure 1
The linearized form of this DFA| suitable for machine processing, is:

start 1;

succeed 6;

fail 7;

1->2: auth_link(R,C);
2->3: auth_challenge(C,R);
2->7: sorry(C,R);

3->4: reply(R,C);

4->5: reply(C, R);

4->7: error(C, R);

5->6: performative(R, C);

Note that the DFA does not indicate how messages are generated; it simply dic-
tates what sequences of messages count as engaging in a specified conversation.
It 1s this independence of form from action that allows the same conversation
specification to be used by the agents at both ends of the conversation.



We have fully implemented such KQML conversations in Java. A single con-
versation specification is shared among agents, who can use it to engage in either
side of the conversation. Furthermore, conversation specifications can be placed
in a hierarchy, with detailed conversations extending simple ones. This system
forms the basis for the CIIMPLEX factory floor automation project [13].

3.2 Integrating Security into Conversations

The DFA shown in Figure 1 represents a conversation whose purpose is to au-
thenticate transmission of a single KQML performative. In general, conversations
between agents will not be about security; rather; they will be about a domain of
mutual interest to the conversing agents. For example, a conversation designed
to support price negotiation will express offers, counteroffers, and acceptance or
rejection of a final price. To integrate authentication into such a conversation,
one could simply replace each transition with the entire authentication DFA de-
picted in Figure 1. Unfortunately, such a brute force approach misses at least
three important points about the way that security ought to be incorporated
into an agent communication language. First, it obscures the close relationship
between the authenticated and unauthenticated conversations. Second (or per-
haps as a corollary to the first point), it misses the subservient nature of those
portions of the conversation that are devoted to authentication. Third, it is un-
necessarily expensive. For example, in a price negotiation, the final agreement
on price will likely need to be authenticated. However, offers and counteroffers
along the way will not benefit from authentication (at least in an environment
where uncompleted sales are not deprecated).

For these reasons, we recommend an approach in which individual arcs of a
DFA representing a conversation can be tagged with privacy and authentication
requirements. Such requirements are simply references to standard conversations,
such as the one depicted in Figure 1. If we view a conversation as an augmented
transition network [11], the addition of a security requirement to an edge converts
that edge to a push arc.

This approach maintains the close relationship between a basic conversa-
tion and its variants that incorporate privacy and authentication, in a way that
clearly leaves the security mechanisms subservient to the rest of the conversa-
tion. Furthermore, security can be applied selectively; only arcs that are tagged
will invoke the appropriate security mechanisms.

A further advantage of this approach is the ease with which it can be em-
bedded in a mediated architecture. If agents are to remain light-weight, they
will need to rely on other agents to provide basic services. For example, an
authentication agent might serve as an expert in authentication across a wide
variety of underlying security substrates. Assuming that authentication of the
authentication agent itself was not an issue (perhaps because of judicious use of
firewalls), such an agent could be relied upon for authentication of conversations
with third parties. Our approach allows such mediation without complicating
the conversation specifications shared by the two negotiating agents.



4 Conclusion

The proposed message-level security model addresses privacy, authentication and
non-repudiation (if asymmetric key mechanism is used for the master and session
keys) in agent communication, at a level that is appropriate for reasoning agents.
The limitations of the model, discussed in detail in Thirunavukkarasu [26], were
briefly touched on here. The model does not provide a mechanism to exchange
credentials; nor does it support non-repudiation of message receipt. Message
replay detection requires that recipients are known in advance; this may cause
problems in an agent architecture that uses facilitator agents to automatically
route messages whose intended recipients are described only in general terms
by the sending agent. The security architecture requires that agents maintain
state information, e.g., next message ID and next session key, to prevent message
replay attack and cipher attack.

Ultimately, the effectiveness of this security model depends on the strength
of the underlying cryptologic algorithms and functions. Yet, by expressing the
details of the security architecture in a way that agents can reason about, these
dependencies need not hamper the high-level development of intelligent agent
systems.
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