KQML - A Language and Protocol for
Knowledge and Information Exchange

Tim Finin and Rich Fritzson
Computer Science Department
University of Maryland, UMBC

Baltimore MD 21228

Don McKay and Robin McEntire
Valley Forge Engineering Center
Unisys Corporation
Paoli PA 19301

Abstract. This paperdescribeghe design oandexperimentation with th&nowledge Quernand Manipulation
Language (KQML), a new language and protocol for exchanging information and knowlgugevork is part of

a larger effort, the ARPA Knowledge Sharing Effort which is aimed at developing techaiiesthodology for
building large-scale knowleddeaseswhich are sharablandreusable. KQML is both a message forraat a

message-handling protocol to suppuarh-time knowledge sharing among agentsKkQML can beused as a
language for an application program to interact with an intelliggstem or for two omore intelligentsystems to
share knowledge in support of cooperative problem solving.

KQML focuses on an extensibset of performatives which defineghe permissible operatiorikat agents may
attempt on each other's knowledged goal stores. The performatives comprise a substrate on whadvétop
higher-level models of inter-agent interaction such as contract nets and negotiation. In addition, KQML provides a
basic architecture for knowledge sharing through a special class of agent called commuadaibtidors which
coordinate the interactions of other agents The ideas which underbgalveng design of KQMLare currently

being exploredhrough experimentgbrototype systemwhich are beingused to support several testbeds in such
areas as concurrent engineering, intelligent design and intelligent planning and scheduling .

. “provider” processesand “consumer” processes and
Introduction perform services on the raw information such as providing
Many computer systemare structured asollections of standardized interfaces; integrating informatifsom
independentprocesses thesare frequently distributed ~ several sourcedranslating queries or replieMediators
across multiple hosts linked by a network. Database (also known as “middleware’gre becoming increasingly

processes, real-timgrocessesind distributed Alsystems ~ important ashey are commonly proposed as affective
are afew examples. Furthermore, in modern network method forintegrating new information systemswith
systems, it should be possible to build nesegrams by inflexible legacy systems.

extending existingystems; a newmallprocess should be o ever, networks environments which support “plug and
conveniently Im_kable to existing information sources and play” processeare still rare, andnost distributedsystems
tools (such as filters or rule based systems). are implemented with adhoc interfaces betweetheir

The idea of an architecture where this is easy to do is quitecomponents. Manyinternet resources, such as library
appealing. (It is regularly mentioned stience fiction.) catalog accessfinger, and menubased systems are
Many proposals forintelligent user-agents such as designed to support only process-to-usateraction.
Knowbots [Kahn] assume theexistence ofthis type of Those which support process-to-process communication,
environment. Ondype of program thatwould thrive in such as ftp or th#losaic world widewebbrowser, rely on
such an environment is a mediator [Wiederhold]. fairly primitive communication protocol§’he reason for
Mediators arerocesses which situate themselbesveen this is that there are nadequate standards to support

complex communication amongorocesses. Existing

protocols, such as RPGre insufficient for several

reasons. Thegre not all that standard; there aterently

several successfnd incompatible RPCstandards (e.g.
ONC and DCE).Theyarealso toolow level; they do not
providehigh level access tmmformation, butare intended
only as “remote procedure calls.”

Nor are there standamhodels forprogramming in an
environment wheresome of the data is supplied by
processesunning onremote machineand some of the
results areneeded by other similarly distaprocesses.
While there are many adhoc techniques for
accomplishing what is needed, it is importatitat
standard methods aeslopted as early as is reasonable in
order to facilitateand encourage thaise of these new
architectures. It is not enoudbr it to be possible to
communicate, it must beasy tocommunicate. Nobnly
should low level communication tasks such as error
checking be automatic, but usimed observing protocol
should be automatic as well.

KQML is a language and a protodbiat supportghis type

of network programmingpecifically for knowledge-based
systems orintelligent agents. lwas developed by the
ARPA supported Knowledg&haring Effort [Neches 91,
Patil 92] and separately implemented by several research
groups. It hasbeen successfully used implement a
variety of informationsystemsusing differentsoftware
architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a
consortium to develop conventiofeilitating the sharing
and reuse of knowledge basesnd knowledge based
systems. Its goal is to define, develoand test
infrastructure and supporting technology to enable
participants to build much biggeand more broadly
functional systems than could be achieved working alone.

Currentapproaches for building knowledge-basgdtems
usually involve constructing new knowledf@pases from
scratch. Thaability to efficiently scale up Al technology
will require thesharing andeuse of existing components.
This is equally true of software modules as well as
conceptual knowledge. Al system developers coléh
focus onthe creation of the specializéchowledge and
reasoners new tthe task athand. New systems could
interoperate with existingystemsusing them to perform
some of its reasoning. In thigy, declarative knowledge,
problem solving techniquesnd reasoningervices could

all be shared among systems. The ability to build, manage
and use sharableand reusable knowledge resources is
thought to be akey to the realization of large-scale
intelligent systems. The definition of conventions
enabling sharing amonmpllaborators is the essential first
step toward these goals.

The KSE is organized around four working groups each of
which is addressing a complementary problem identified
in current knowledge representation technology:

*The Interlingua Group is concerned with translation
between differentrepresentation languages, with
sub-interests in translation at design time andiat
time.

*The KRSS Group (Knowledge Representation
System Specification) is concerngdth defining
common constructwithin families of representation
languages.

*The SRKB Group (Shared,Reusable Knowledge
Bases) is concernagith facilitating consensus on
the contents of sharabk@mowledge bases, witbub-
interests in share#&nowledge forparticular topic
areas and in topic-independent development
tools/methodologies.

*The External Interfaces Group is concerned with
run-time interactionsbetween knowledge based
systems and other modules in a run-time
environment, with sub-interests in communication
protocols for KB-to-KB and for KB-to-DB.

The KQML language is one of thmain results which
have come out of the external interfaces group of the KSE.

KQML

We could address many ofthe difficulties of
communication between intelligent agents described in the
Introduction by giving them acommon language. In
linguistic terms, this means thahey would share a
common syntax, semantics and pragmatics.

Getting information processesspecially Al processes, to
share acommon syntax is a major problem. There is no
universally accepted language in which to represent
information and queries. Languages such as KIF
[Genesereth etal. '92], extended SQL,and LOOM
[McGreggor] havetheir supportershut there is also a
strong positiorthat it istoo early tostandardize on any
representation language. As a result, it is currently
necessary to sathat two agents can communicate with

Query ——J»

Client Server

~— Reply

Figure 1 - In this example ofsynchronous communicati
query, a blocking query waits for an expected reply.

N

each other ithey have a common representation language
or use languages that are inter-translatable.

Assuming a common or translatable language, it is still
necessary for communicating agentshare gramework

of knowledge(i.e. a shared structuretcabulary) in order

to interpret thanessages they exchangdéis is notreally

a shared semantics, butshared ontology There is not
likely to be one shared ontology, but many.Shared
ontologies are underdevelopment in manyimportant
application domains such as planniagd scheduling,
biology and medicine.

Pragmatics among computer processes includes

1) knowing who to talk with and how to find them
2) knowing how to initiate and maintain an exchange.

KQML is concernedprimarily with pragmatics (and
secondarily with semantics). It is a languagel aset of

protocols which support computerprograms in
identifying, connecting wittand exchangingnformation

with other programs.

KQML Protocols

There are avariety of interprocess information exchange
protocols. There ighe simplecase of one process (a
client) sending ajuery toanotherprocess (a server) and
waiting for a reply as is shown in Figure This occurs
commonly when a backward-chaining reasoner retrieves
information from a remote source. As it neatksta, it
places querieand waits forthe repliesbeforeattempting
any further inferences. A far asotocol is concernedhis
case includes those whetbe server'sreply message
actually contains a collection of replies.

Another common case is when the servegfgly isnot the
complete answer but laandle whichallows the client to

ask forthe components of the reply, one at a time as
shown in Figure 2. A common example tbis type of
exchange is a simple client querying a relational database

or a reasoner which camproduce a sequence of
instantiations in response to query. Although this
exchange requirethat theservermaintainsomeinternal

state, the individual transactions are each the same as in
the singlereply case. l.e., each transaction is a “send-a-
guery / wait / receive-a-reply” exchange. We refer to these
transactions as being synchronous because messages arrive

Query =y
~§—— Handle
Next =l
~—— Reply
Next =l
~—— Reply

Client Server

Figure 2 - The remote server can maintaitate by
remembering the partial answer. Replies are
individually, each at the request of the client.

sent

at the client only when they are expected.

It is a different situation in real-timsystems, among
others, where the cliesubscribes to a server’s output and
then an indefinite number akplies arrive at irregular
intervals in the future, as shown in Figure 31his case,

Subscribe =——j-
~— Reply
~— Reply
~— Reply
~— Reply

Client Server

Figure 3 - Using an asynchronous communication protog
non-blocking subscribeequest carresult in an irregularl
spaced, indeterminate number of incoming messages.

the clientdoesnot know when each reply message will be
arriving andmay be busyperforming some other task
when they do. We refer to thesensactions as being
asynchronous

There are other variations of these protocols. For example,
messagesnight not beaddressed to specific hosts, but
broadcast to a number @hem. The replies, arriving
synchronously or asynchronously have to be collated]

optionally, associated with tliierythattheyare replying the content: its language, tlentology it assumes, and

to. some type ofmore general description, such as a
descriptornaming atopic within the ontology. These
The KQML Language features make it possible for KQMimplementations to

analyze, rout@andproperly deliver messages evough

KQML supports these protocols bgaking them an their content is inaccessible.

explicit part of thecommunication language. When using _
KQML, a softwareagent transmitsnessages composed in Conceptually, a KQML message consists of a

its own representation language, wrapped irK@ML performative, its associated arguments which include the
message. real content of the messagand a set of optional

arguments whichlescribethe content in anannerwhich

is independent of the syntax of the content language. For
example, a message representingq@ery about the
location of a particular airport might be encoded as:

KQML is conceptually a layerethnguage. TheKQML
language can bdewed adeing divided into thretayers:
the content layer, themessage layerand the
communication layer. The contetdyer is the actual
content of the message, in the programs own (ask-one :content (geoloc lax (?long ?lat))
representation language.KQML can carry any ‘ontology geo-model3)

representation language, including languages expressed as . o

ASCII strings and those expressed using a binary notation. N this message, thEQML performative is ask-one, the
All of the KQML implementations ignore the content content is (geoloc lax (?long?lat)) and theassumed

portion of themessage except the extenthatthey need ontology is identified by the tokergeo-model3Thesame
to determine its boundaries. generalquery could be conveyagsing standarérolog as

o the content language in a forimat requests the set of all
The communication leveéncodes a set of features to the gnswers as:

message which descrilibe lower level communication
parameters, such as the identity of the sender and

recipient, and a uniquédentifier associated with the (ask-all :content "geoloc(lax,[Long,Lat])"
communication :language standard_prolog
. :ontology geo-model3)

The messagelayer formsthe core of the language. It

determines the kinds of interactions aan have with a The syntax oKQML is based on a balancgurenthesis

KQML-speaking agent. The primary function of the list. The initial element of the list is theerformative and

messagdayer is to identifythe protocol to be used to the remaining elements are therformative’s arguments

deliver the messageand to supply a speech actor as keyword/valu@airs.Becausdahe language iselatively

performativewhich the sender attaches to the content. The simple, the actual syntax is relativelpimportant and can
be changed if necessary time future. (The currergyntax
was selected because mostia# original implementation

efforts were done in Common Lisp.)

Communication ~egff==—f=+ Mechanics of communication The set oKQML performatives is extensibl&here is a
) - set of reserved performatives which have a well defined
Message < * Logic of communication
(performative or speech act) meaning. This is not a required or mininsak; akQML
Content agentmay choose tdandleonly afew (perhaps one or

two) performatives.However, animplementation that
< « Content of communication (in ; ;
agreed upon language, ... choos_es tomplenje_nt one of theeserved perform_atlves
KIF, KRSL, etc.) must implement it in the standaveay. A community of
agentsmay choose to usadditional performatives ithey

_) ol agree on their interpretaticend theprotocol associated
Figure 4 - The KQML language can be viewed as being divided \yith each.

into threelayers:the content layer, the messdgger and the

communication layer. Some ofthe reserved performativesre shown in Figure

5. In addition to standard communicatiperformatives
performative signifieghat thecontent is arassertion a such as ask, tell, deny, deletsdmore protocol oriented
query a commangd or any of a set of known performatives such assubscribe KQML contains
performatives. Becausite content isopaque to KQML, performatives related to the non-protocakpects of

this layer also includes optional features whidéscribe pragmatics, such amdvertise- which allows aragent to

announce what kinds of asynchronous messages it is (tell :language KIF

willing to handle; andecruit - which can baised to find

suitable agents for particular types of messages.

For example, agent B might send the following

performative to agent A:

Basic query performatives:

evaluate, ask-if, ask-in, ask-one, ask-all
Multi-response query performatives:
stream-in, stream-all

Response performatives:

reply, sorry

Generic informational performatives:

tell, achieve, cancel, untell, unachieve
Generator performatives:

standby, ready, next, rest, discard, generator
Capability-definition performatives:

advertise, subscribe, monitor, import, export
Networking performatives:

register, unregister, forward, broadcast, route

Figure 5 - There are about two dozen reserved
performative names which fall into seven basic
categories.

(advertise
‘language KQML
:ontology K10
:content (subscribe :language KQML
:ontology K10
:content (stream-about
:language KIF

:ontology motors
:content motorl)))

to which agent B might respond with:

(subscribe ‘reply-with s1
‘language KQML
:ontology K10
:content (stream-about
:language KIF
:ontology motors
:content motorl))

Agent Awould then send B a stream of tednd untell
performatives over time with information abounbtorl, as

in:

:ontology motors
lin-reply-to s1
:content (= (val (torque motorl) (sim-time 5))
(scalar 12 kgf))
(tell :language KIF
:ontology structures
sin-reply-to s1
:content (fastens framel2 motorl))
(untell :language KIF
:ontology motors
lin-reply-to s1
:content (= (val (torque motorl) (sim-time 5))
(scalar 12 kgf))

KQML Semantics. Currently there are no formal
semantics defined fathe basic KQML performatives or
for the protocols associated with them. A semantic model
is under development that assurtiest aKQML-speaking
agent has a virtuaknowledge basewith two separate
components: an information store (i.ebeliefs”) and a
goal store (i.e., ‘“intentions”). The primitive
performativesaredefined in terms ofheir effect on these
stores. A TELL(S), for example, is an assertion by the
sending agent to the receiving agdmdt thesentence S is

in its virtual belief store. An ACHIEVE(S) is a request of
the sender to the receiver to add S to its intention store.

The protocolsthat govern theallowable responses when
an agenteceives a KQML messagsust also be defined.
These are currentlydefined informally in English
descriptions, but work is underway to provide formal
definitions in terms of arammar using thelefinite
clause grammar (DCG) formalism.

KQML Internal Architectures

KQML was not defined by a single research grdop a
particular project. Itwas created by a committee of
representatives from different projectd] of which were
concerned wittmanaging distributed implementations of
systems. One project was a distributed collaboration of
expertsystems inthe planning andcheduling domain.
Anotherwas concerneavith problem decomposition and
distribution in the CAD/CAM domain. A common
concern was the management of acollection of
cooperating processeand the simplification of the
programming requiremenfsr implementing asystem of
this type. Howeverthe groups did not share cmmmon
communication architecture. As a resllQML does not
dictate a particularsystem architecture, andseveral
different systems have evolved.

Our group hasgwo implementations of KQML. One is communication channel is currently implemented by a
written in Common Lisp, the other in C. Bodhne fully UNIX pipe, but weare planning on experimenting with a
interoperable and are frequently used together. higher bandwidth channel which can be implemented with

The design of thestvo implementations was motivated shared memory.

by the need to integratecallection of preexisting expert The Lisp implementationuses Lucid’s multitasking
systemsinto a collaborating group gfrocesses. Most of primitives to implement the router as a separate Lisp task
the systems involved were never designed to operate in awithin the application’s Lisp image. hvould be too

communication oriented environment. The inefficient to fork a separate Lisp image fiive router.
communication architecture is built around two However, weare planning on experimenting with using
specialized programs, a routand afacilitator, and a the C router with Common Lisp applications.

library of interface routines, called a KRIL.

KQML Routers. Routers are content independent
message router&ach KQML-speakingoftwareagent is
associated with its own separate router process. All routers
are identical; each igist an executingopy of the same
program. A router handles s#flQML messagegoing to
andfrom its associatedgent.Becausesach program has Agent
an associated router process, it is netessary to make
extensive changes to the progranrigernal organization

to allow it to asynchronously receive messages from a Router

variety of independent sourceBhe routerprovidesthis

service forthe agent angrovidesthe agent with a single Network KQML

point of contact for communicating witthe rest of the Connections objects

network. It provides both clierand service functions for Network

the applicationand can managenultiple simultaneous

connections with other agents. Figure 6 - A router gives an application a single interface
) to the network, providing both client and server

The router neverlooks at the contentfields of the capabilities, ranaging multiple simultaneous

messages ithandles. It reliessolely on the KQML connections, and handlingome KQML interactiong

performativesand its arguments. If aoutgoing KQML autonomously.

message specifiesparticular Internet address, the router
directs themessage tat. If the message specifies a
particularservice byname, the router will attempt to find KQML Facilitators. To deliver messageshat are

an Internet addres$or that service and deliver the incompletely addressed, routers rely ftacilitators. A
message to it. If the message only provides a description offacilitator is a network application which provideseful
the content (e.g.query, :ontology “geo-domain-3”, network servicesThe simplestservice it provides is to
:language “Prolog”, etc.) the routsray attempt to find a maintain aregistry of service names; routers rely on
server which can deal with tleessagand itwill deliver facilitators to help them find hosts to route information to.
it there, or itmay choose to forward it to amarter In this role, facilitatorsserve only as consultants to the
communication agent whichhay bewilling to route it. communication process.

Routers can be implemented with varyindegrees of
sophistication -- theycan not guarantee to deliver all
messages.

However, facilitators can provide many other
communication services. On request, a facilitator may
forward messages to named servid@s. it may provide

In the C implementation, a router actually is a separate matchmakingservices betweemformation providers and
UNIX process. It is &hild process which is forked by the consumers. They include

application. The communication channbétween the

router and theapplication carriesKQML messages but content based routingf information between agents,

may carry morehan isspecified bythe formalprotocol. brokering of information between anadvertising
That is,since it is a private channéetweenthe router supplier and an advertising consumer,

and application it does not have toobserve KQML recruiting suppliers to deal directly with advertising
protocol. The router only has tbservehe formalKQML consumers

rules when speaking to theoutside world. The smart multicastingf information to interested agents

These activities can bgerformed in a relatively simple with no understanding of the conteigld of the KQML

manner (ashown in Figure 8) or they may be performed message, the KRIL is embedded in the applicaiuh has
by an intelligent agent capable of synthesizing information access tahe application’sools foranalyzing the content.
from multiple sources. While there isonly one piece otouter code, which is
instantiatedor each processhere can b&arious KRILS,

one for each applicatiotype or one foreach application
language. The general goal of thRIL is to makeaccess
to the router as simple as possible for the programmer.

Facilitators are actual netwosoftwareagents; they have
their own KQML routers tohandle theirtraffic and they
deal exclusively in KQML messaged.here istypically
one facilitator for each local group of ageniis can
translate into one facilitator per local site or one per
project; theremay bemultiple local facilitators to provide

redundancy. The facilitator databasay be implemented
in any number ofvaysdepending on the number lobsts
served and the quality of service required. Arearly
ask() Agent
AddressRoutingl A >| B I
l< tell(X)
Content Based subscribe(tel
| Facilitator
broker(ask(ertises (ask(X))
Brokering ’T|<_$ E B
e o9 Network
broker(ask(] vertisee (ask(X
Recruiting | A B Figure 8 - A communication Facilitator is an ag#at performg
i) various useful services, e.g. maintaining a registry of service
names, forwarding messages to named services, routing mgssages
Figure 7 - Facilitators are agents that dedriowledge based on content, providing “matchmaking” between
about the@nformation services and requirements of other information providers and clients, and providing mediation|and
agents. They can offer services such as forward|ng, translation services.
brokering, recruiting and content-based routing.

To this end, &KRIL can be as tighthembedded in the
|mp|ementat|0n of a facilitator rephcated the database on appiicatiorL or eventhe appiication’s programming

eVerymaChine in the |Ocahet, toreduce communication |anguage, as is desirable. For exampie, aﬂriy

overhead forrouting. This was replacedwith a more implementation oKQML featured a KRIL forthe Prolog
centralized implementation which is supplemented by |anguage which had only a simple declarative interface for
CaChing of information in the routers. For |arge|tWOI’kS, the programmer. During the Operation of tmoiog

and for facilitators serving multiple networks, a interpreter, whenever the Prolog database was searched for
distributed imp|ementati0n (ana|OgOUS to the Internet predicateS, theKR”_ WOUId intercept the Search;
domain name service) may be more appropriate. determine if the desired predicata®re actually being
When each application starts up, its router announcesSuPPlied by a remote agent; formulazd pose an

itself tothe local facilitator sahat it isregistered in the ~ @PPropriateKQML query; and return thereplies to the
local database. When the application exits, the router Prolog interpreter as thoughey were recovered from the

sends anothé€QML message tohe facilitator, removing mterr_laldatabase_. T_hE’roIog program itse_lf contained no
the application from the facilitator's databasethis way mention of the distributed processing goingeoept for
applications can find each other without there having to be the declaration of which predicategre to betreated as
a manually maintained list of local services. remote predicates. Figure 9 shows an examplehisf

together with a facilitation agent which provides a central
KQML KRILs. Since the router is a separgieocess content-based routing service.

from the application, it isnecessary to have a

programming interfacdetweenthe applicationand the It is notnecessary to completely embtiwe KRIL in the
router. This interface is called KRIL (KQML Router application’s programming language. A simpgIL for
Interface Library). While the router is a separatecess, & language generally providéso programmatic entries.

For initiating a transaction there issand-kgml-message

By,
export(p/2).

import(g/1).
import(r/1).

Application

g@) A5

%port(q

IApplication

(b) A4

fleﬁport(r

together to prove goals.

Figure 9 - This example showise use of a facilitator to do content-based routiigwing a set of Prolog-based agents teork

?- p(A,B)
import(p/2)

[Application

A2

Facilitator

A3

B85 %0.4)

import(al,p/2)
export(a4,r/1)
exporte (a6,p2) . ..

function. Thisaccepts a message contemd as much
information abouthe messageand its destination as can
be providedand returns either theemote agent’s reply (if
the message transmission is synchronans theprocess
blocks until a reply is received) or a simpleode
signifying themessage wasent. Forhandling incoming
asynchronous messages, there is usuallydealare-
message-handlerfunction. This allows the application
programmer to declare which functions shouldriveked
when messages arrive. Depending ome KRIL'S
capabilities, the incomingmessagescan be sorted
according tgperformative or topic, or other features, and
routed to different message handling functions.

In addition to these programming interfaces, KRILs accept
different types of declarations which allowthem to
register their application with local facilitatoasid contact
remote agents to advighem thatthey are interested in
receiving data fromthem. Our group has implemented a
variety of experimental KRILs, for Common Lisp, C,
Prolog, Mosaic, SQL, and other tools.

KQML Performance. We have developed a simple
performance model, shown in Figure 1foy KQML
communication which hasllowed us to analyze the
efficiency ofcommunicatiorand toidentify and eliminate
bottlenecks bytuning thesoftwareand adding additional
capabilities. For example, various compression
enhancements have been added which cut
communication costs bgeducing themessage sizes and

also by eliminating a substantial fractionsymbol lookup
and string duplication.

function
calls

Agent

KRIL

KQML

Network objects

Figure 10 - Th&KRIL is part of the application and hascess t
its internals. Itprovides internal access points to which
router deliverancoming messages, analyzes outgoing mess
for appropriate domain taggin@nd routing, and providg
application specific interface and procedui@scommunication
access.

D
the
sages
BS

Experiences with KQML

technology integration experiments in

the We have used KQML athe communication language in

several the

ARPA/Rome LabPlanning Initiative. These experiments
linked a planning agent (i8IPE), with a scheduler (in
Common Lisp), a knowledge baga LOOM), and acase
based reasoningtool (in Common Lisp). All of the
components integratediere preexisting systemswhich
were not designed to work in a distributed environment.

We have alssuccessfully used KQML irdemonstrations
for the ARPA-supported Integrated Weapoi®y/stems
Database, integrating distributed clienf;n C) with
mediators whichwere retrieving data from distributed
databases. Additional work was downeder thisproject
using KQML to link a World Wide Web browserwith
mediators designed to locate documents for them.

The ComputeiSystems Division othe Aerospace Corp.
has used KQML to integrate commerciabff-the-shelf

Reading & decoding reply Encoding & writing reply

S N
Waitin » > §
1 M

Encoding & writing querfReading & decoding query

Figure 11 - A simple performance mod&r KQML
communicationhas allowed us t@nalyzethe efficiency of
KQML-based communication and to eliminate bottlenecks,

software into systems bywrapping them inKQML-
speaking shells.

The Lockheed AlCenter and th&alo Alto Collaboration
Testbed have also made extensive use of KQML to
decomposeand distribute problems inthe CAD/CAM
domain.

Conclusion

This paper hasdescribed KQML -- alanguage and
associated protocol by whidntelligent software agents
can communicate to share informatiand knowledge.
We believethat KQML, or somethingvery much like it,
will be important in building the distributed agent-
oriented informatiorsystems othe future. One must ask
how this work is to be differentiated frorthe work in two
related areas -distributed system§DS) and distributed
Al (DAI).

KQML and DS KQML offers an abstraction of an
information agent (provider or consumer) dtigherlevel
that istypical in other areas of Computer Science.
particular, KQML assumes a model of aagent as a
knowledge-based system (KBSAlthough this will not
seem to be surprising or profound in our Al community, it

In

is a significant advancéwe hope!) forthe general CS
community. TheKBS model easily subsumes a broad
range of commonly usedinformation agent models,
including database managemerstystems, hypertext
systems, server-oriented software (e.finger demons,
mail servers, HTML servers, etcjmulations, etc. Such
systemscan usually be modeled abaving two virtual
knowledge bases ongepresenting the agent's
information store (i.e. beliefs)and the other representing
its intentions (i.e., goals).

We hope that future standardsfor interchange and
interoperability languageand protocols will be based on
this very powerfuland richmodel. This will avoid the
built-in limitations of more constrained models (etbat

of a simple remote procedure call or relational database
guery)andalso make it easier to integrate truly intelligent
agents with simpler andnore mundane information
clients and servers.

In addition to having something tdfer, KQML also has
something itseeks from distributedystems work -- the
right abstractionsand software components to provide
basic communication services.Current KQML-based
systems have bedpuilt on the mosttommon transport
layers in use today -TCP/IP and EMAIL. The real
contributionsthat KQML makesare independent of the
transport layer. We anticipatthat KQML interface
implementations will be based on whatever is seen as the
best transport mechanism.

KQML and DAI. The contributiorthat KQML makes to
Distributed Al research is to offer a standard language and
protocol that intelligent agents canse to communicate
among themselves awell as with other information
serversandclients. Webelievethat permitting agents to
use whatever content languagigey prefer will make
KQML appropriate for most DAI research. In designing
KQML, our goal is to build irnthe primitivesnecessary to
support all of the interesting agent architecturasently

in use. If we have been successthen KQML should
prove to be a good tool for DAlesearch, and, ifised
widely, should enablegreater research collaboration
among DAI researchers.

KQML and the Future. The ideas which underlie the
evolving design of KQMLare currently beingexplored
through experimentgbrototype systemsvhich arebeing
used to support several testbeds in suaieas as
concurrent engineering [Cutkowski, McGuire,
Tenenbaum, Kuokka], intelligent design [Genesereth] and
intelligent planning andcheduling. Figure 18hows the

architecture of aystem inwhich KQML is being used to
support the interchange khowledgeamong a planner, a
plan simulator, a plareditor and aknowledge server,
which is therepository forthe share@ntologyandaccess
point to common databasethrough the Intelligent
Database InterfacfMcKay, Pastor].

Force Plan
and
Skeletal
Justification

Forces
(TPFDD)

Intelligent KB/DB
I
; Operational

Support Unit
and

Sustainment
Generation

Force
Module
Selection

Force
Planner

N

N

Simulation
Analysis

Simulator

Asset
Allowance
—_—

Validated
TPFDD

Figure 12 - KQMLhas been used in th®RPA Rome Plannin
Initiative to support communication between components @

Closure
Analysis

Constraint
Based
Scheduler

Full
(Annotated)
TPFDD

Simulator

J

M. Cutkosky, E. Engelmore, RFikes, T. Gruber, M.
Genesereth, and W. Mark. PACT: An experiment in integrating
concurrent engineering systems. 1992.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill.
Trends in cooperativedistributed problem solving. IEEE
Transactions on Knowledgend Data Engineering, 1(1):63--83,
March 1989.

Dan Kuokkaet. al. Shade: Technology for knowledge-based
collaborative. InAAAlI Workshop on Al in Collaborative
Design, 1993.

James McGuiret. al. Shade: Technology for knowledge-based
collaborative engineering. Journal of Concurrent Engineering:
Research and Applications, to appeatr.

Tim Finin, Rich Fritzson, an®on McKayet. al. Anoverview

of KQML: A knowledge queryand manipulation language.
Technical report, Department of Computer Science, University
of Maryland Baltimore County, 1992.

Tim Finin, Rich Fritzson, andon McKay. A language and
protocol to supportintelligent agent interoperability. In
Proceedings othe CE& CALS Washington "92 Conference.
June 1992.

Tim Finin, Don McKay, Rich Fritzsonand Robin McEntire.

f 80QML: an information and knowledge exchangeotocol. In

intelligent planning system.

The design oKQML has continued tevolve agheideas
areexploredandfeedback is received fromhe prototypes
and theattempts to uséhem in realtestbed situations.
Furthermore, nevstandardgor sharing persistentbject-
oriented structures are beidgvelopedand promulgated,
such as OMG’'sCORBA specificationand Microsoft's
OLE 2.0. Should any of thedecome widelysed, it will
be worthwhile to evolve KQML so that its key iddasthe
collection of reserved performativethe supportfor a
variety of information exchange protocalse needor an
information based directory servi€é can enhancéhese
new information exchange languages.

Bibliography

External Interface®Vorking GroupARPA Knowledge Sharing
Effort. KQML Overview. Working paper, 1992.

External Interface®Vorking GroupARPA Knowledge Sharing
Effort. Specification of the KQML agent-communication
language. Working paper, December 1992.

S. Bussmann and J. Mueller. cdmmunication architecture for
cooperating agents. Computessid Atrtificial Intelligence,
12:37--53, 1993.

International Conference on Building and Sharing of \lexsge-
Scale Knowledge Bases, December 1993.

M. Genesereth and R. Fikes et. aKnowledge interchange
format, version 3.0 reference manual. Technical report,
Computer Science Department, Stanford University, 1992.

Mike Genesereth. Designworld. Rroceedings othe IEEE
Conference on Roboticand Automation, pages 2,785--2,788.
IEEE CS Press.

Mike Genesereth. An agent-basexpproach to software
interoperability. Technical Repoitogic-91-6, Logic Group,
CSD, Stanford University, February 1993.

Carl Hewitt and Jefinman. DAI betwixt and betweenFrom
“intelligentagents" to open systemsience. IEEE Transactions

on Systems, Man and Cybernetics, 21(6), December 1991.
(Special Issue on Distributed Al).

Michael N. Huhns, David M. Bridgeland, and Natraj V. Arni. A
DAl communicationaide. Technical RepoACT-RA-317-90,
MCC, Austin TX , October 1990.

R. E. Kahn, Digital Library Systems, Proceedinggh# Sixth
Conference on Atrtificial Intelligence Application€AIA-90
(Volume II: Visuals), Santa Barbara CA, pp. 63-64, 1990.

Robert MacGregoand RaymondBates, TheLoom Knowledge
Representation Language, ProceedingtheiKnowledge-Based
Systems Workshop, St. Louis, Missouri, April, 1987.

Don McKay, TimFinin, andAnthony O'Hare. The intelligent
database interface. In Proceedings tbe 7th National
Conference on Atrtificial Intelligence, August 1990.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W. Swartout. Enablingchnology for knowledgsharing.
Al Magazine, 12(3):36 -- 56, Fall 1991.

Jeff Y-C Pan andJay M. Tenenbaum. An intelligent agent
framework for enterprise integration. IEEE Transactions on
Systems, Man and Cybernetics, 21(6), December 1991. (Special
Issue on Distributed Al).

Mike P. Papazoglouand Timos K. Skis. An organizational
framework for cooperatingintelligent information systems.
International Journal on Intelligent and Cooperatiiermation

Systems, 1(1), (to appear) 1992.

Jon Pastor,Don Mckay and Tim Finin, View-Concepts:
Knowledge-Based Access t®atabases, First International
Conference on Informationand Knowledge Management,
Baltimore, November 1992.

R. Patil, R. Fikes, P. Patel-Schneider,NicKay, T. Finin, T.
Gruber, and R. Neches. The darpa knowledge shafiiog:
Progress report. In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representatioand Reasoning:
Proceedings afhe Third InternationaConference (KR'92), San
Mateo, CA, November 1992. Morgan Kaufmann.

J. R. Searle. What is a speett? In M. Black, editorf-rom
Philosophy in America, pages 221--239. Allen & Unwin, Ort??,
1965.

Reid G. Smith. The contrachet protocol: High-level
communicationand control in adistributed problem solver.
IEEE Transactions on Computers, C-29(12):1104--1113,
December 1980.

Reid G. Smith and Randall Davis. Framew&ok cooperation
in distributed problem solvingIEEE Transactions on System,
Man, and Cybernetics, SMC-11(1):61--70, January 1981.

M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration:
Lessons fromshade and pact. In C. Petrie, editor, Enterprise
Integration Modeling. MIT Press, 1993.

Gio Wiederhold Peter Wegner and Stefan@eri. Toward
megaprogramming. Communications tbok ACM, 33(11):89--
99, November 1992.

Steven T. C.Wong and John L. Wilson. COSMO: a
communication scheme for cooperative knowledge-based
systems. IEEE Transactions on Systems, Man and Cybernetics,
to appear.

